Advertisement

Innate Immune Responses of the Dental Pulp to Caries

Published:March 09, 2007DOI:https://doi.org/10.1016/j.joen.2007.01.001

      Abstract

      Various cells and inflammatory mediators are involved in the initial pulpal responses to caries. This review focuses on the cellular, neuronal, and vascular components of pulpal innate responses to caries. Discussion will include dentinal fluid, odontoblasts, neuropeptides, and neurogenic inflammation, which are not classic immune components but actively participate in the inflammatory response as the caries progress pulpally. Summaries of innate immune cells as well as their cytokines and chemokines in healthy and reversible pulpitis tissues are presented.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Endodontics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Abbas A.
        • Lichtman A.
        Cellular and molecular immunology. 5th ed. Saunders, Philadelphia2003
        • Csillag M.
        • Berggreen E.
        • Fristad I.
        • Haug S.R.
        • Bletsa A.
        • Heyeraas K.J.
        Effect of electrical tooth stimulation on blood flow and immunocompetent cells in rat dental pulp after sympathectomy.
        Acta Odontol Scand. 2004; 62: 305-312
        • Wadachi R.
        • Hargreaves K.M.
        Trigeminal nociceptors express TLR-4 and CD14: a mechanism for pain due to infection.
        J Dent Res. 2006; 85: 49-53
        • Byers M.R.
        • Taylor P.E.
        Effect of sensory denervation on the response of rat molar pulp to exposure injury.
        J Dent Res. 1993; 72: 613-618
        • Hahn C.L.
        • Falkler Jr, W.A.
        • Siegel M.A.
        A study of T and B cells in pulpal pathosis.
        J Endod. 1989; 15: 20-26
        • Izumi T.
        • Kobayashi I.
        • Okamura K.
        • Sakai H.
        Immunohistochemical study on the immunocompetent cells of the pulp in human non-carious and carious teeth.
        Archs Oral Biol. 1995; 40: 609-614
        • McLachlan J.L.
        • Sloan A.J.
        • Smith A.J.
        • Landini G.
        • Cooper P.R.
        S100 and cytokine expression in caries.
        Infect Immun. 2004; 72: 4102-4108
        • Reeves R.
        • Stanley H.R.
        The relationship of bacterial penetration and pulpal pathosis in carious teeth.
        Oral Surg Oral Med Oral Pathol. 1966; 22: 59-65
        • Matthews B.
        • Vongsavan N.
        Interactions between neural and hydrodynamic mechanisms in dentine and pulp.
        Arch Oral Biol. 1994; 39: 87S-95S
        • Maita E.
        • Simpson M.D.
        • Tao L.
        • Pashley D.H.
        Fluid and protein flux across the pulpodentine complex of the dog in vivo.
        Arch Oral Biol. 1991; 36: 103-110
        • Pashley D.H.
        The influence of dentin permeability and pulpal blood flow on pulpal solute concentrations.
        J Endod. 1979; 5: 355-361
        • Nagaoka S.
        • Miyazaki Y.
        • Liu H.J.
        • Iwamoto Y.
        • Kitano M.
        • Kawagoe M.
        Bacterial invasion into dentinal tubules of human vital and nonvital teeth.
        J Endod. 1995; 21: 70-73
        • Knutsson G.
        • Jontell M.
        • Bergenholtz G.
        Determination of plasma proteins in dentinal fluid from cavities prepared in healthy young human teeth.
        Arch Oral Biol. 1994; 39: 185-190
        • Speer M.L.
        • Madonia J.V.
        • Heuer M.A.
        Quantitative evaluation of the immunocompetence of the dental pulp.
        J Endod. 1977; 3: 418-423
        • Pulver W.H.
        • Taubman M.A.
        • Smith D.J.
        Immune components in normal and inflamed human dental pulp.
        Arch Oral Biol. 1977; 22: 103-111
        • Okamura K.
        Histological study on the origin of dentinal immunoglobulins and the change in their localization during caries.
        J Oral Pathol. 1985; 14: 680-689
        • Hahn C.L.
        • Best A.M.
        The pulpal origin of immunoglobulins in dentin beneath caries: an immunohistochemical study.
        J Endod. 2006; 32: 178-182
        • Challacombe S.J.
        • Lehner T.
        Serum and salivary antibodies to cariogenic bacteria in man.
        J Dent Res. 1976; 55: C139-C148
        • Challacombe S.J.
        • Bergmeier L.A.
        • Czerkinsky C.
        • Rees A.S.
        Natural antibodies in man to Streptococcus mutans: specificity and quantification.
        Immunology. 1984; 52: 143-150
        • Ackermans F.
        • Klein J.P.
        • Frank R.M.
        Ultrastructural localization of immunoglobulins in carious human dentine.
        Arch Oral Biol. 1981; 26: 879-886
        • Okamura K.
        • Maeda M.
        • Nishikawa T.
        • Tsutsui M.
        Dentinal response against carious invasion: localization of antibodies in odontoblastic body and process.
        J Dent Res. 1980; 59: 1368-1373
        • Love R.M.
        The effect of tissue molecules on bacterial invasion of dentine.
        Oral Microbiol Immunol. 2002; 17: 32-37
        • Pashley D.H.
        • Nelson R.
        • Kepler E.E.
        The effects of plasma and salivary constituents on dentin permeability.
        J Dent Res. 1982; 61: 978-981
        • Hahn C.L.
        • Overton B.
        The effects of immunoglobulins on the convective permeability of human dentine in vitro.
        Arch Oral Biol. 1997; 42: 835-843
        • Brown L.R.
        • Lefkowitz W.
        Influences of dentinal fluids on experimental caries.
        J Dent Res. 1966; 45: 1493-1498
        • Frank M.M.
        • Joiner K.
        • Hammer C.
        The function of antibody and complement in the lysis of bacteria.
        Rev Infect Dis. 1987; 9: S537-S545
        • Taylor P.W.
        Complement-mediated killing of susceptible gram-negative bacteria: an elusive mechanism.
        Exp Clin Immunogenet. 1992; 9: 48-56
        • Pekovic D.D.
        • Adamkiewicz V.W.
        • Shapiro A.
        • Gornitsky M.
        Identification of bacteria in association with immune components in human carious dentin.
        J Oral Pathol. 1987; 16: 223-233
        • Durand S.H.
        • Flacher V.
        • Romeas A.
        • et al.
        Lipoteichoic acid increases TLR and functional chemokine expression while reducing dentin formation in in vitro differentiated human odontoblasts.
        J Immunol. 2006; 176: 2880-2887
        • Huang G.T.
        • Potente A.P.
        • Kim J.W.
        • Chugal N.
        • Zhang X.
        Increased interleukin-8 expression in inflamed human dental pulps.
        Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1999; 88: 214-220
        • Levin L.G.
        • Rudd A.
        • Bletsa A.
        • Reisner H.
        Expression of IL-8 by cells of the odontoblast layer in vitro.
        Eur J Oral Sci. 1999; 107: 131-137
        • Mantovani A.
        • Sica A.
        • Sozzani S.
        • Allavena P.
        • Vecchi A.
        • Locati M.
        The chemokine system in diverse forms of macrophage activation and polarization.
        Trends Immunol. 2004; 25: 677-686
        • Petkovic V.
        • Moghini C.
        • Paoletti S.
        • Uguccioni M.
        • Gerber B.
        Eotaxin-3/CCL26 is a natural antagonist for CC chemokine receptors 1 and 5.
        J Biol Chem. 2004; 279: 23357-23363
        • Shellenberger T.D.
        • Wang M.
        • Gujrati M.
        • et al.
        BRAK/CXCL14 is a potent inhibitor of angiogenesis and a chemotactic factor for immature dendritic cells.
        Cancer Res. 2004; 64: 8262-8270
        • Senger D.R.
        • Galli S.J.
        • Dvorak A.M.
        • Perruzzi C.A.
        • Harvey V.S.
        • Dvorak H.F.
        Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid.
        Science. 1983; 219: 983-985
        • Ferrara N.
        Vascular endothelial growth factor: basic science and clinical progress.
        Endocr Rev. 2004; 25: 581-611
        • Telles P.D.
        • Hanks C.T.
        • Machado M.A.
        • Nor J.E.
        Lipoteichoic acid up-regulates VEGF expression in macrophages and pulp cells.
        J Dent Res. 2003; 82: 466-470
        • Dommisch H.
        • Winter J.
        • Acil Y.
        • Dunsche A.
        • Tiemann M.
        • Jepsen S.
        Human beta-defensin (hBD-1, -2) expression in dental pulp.
        Oral Microbiol Immunol. 2005; 20: 163-166
        • O’Neil D.A.
        • Porter E.M.
        • Elewaut D.
        • et al.
        Expression and regulation of the human beta-defensins hBD-1 and hBD-2 in intestinal epithelium.
        J Immunol. 1999; 163: 6718-6724
        • Abiko Y.
        • Suraweera A.K.
        • Nishimura M.
        • et al.
        Differential expression of human beta-defensin 2 in keratinized and non-keratinized oral epithelial lesions; immunohistochemistry and in situ hybridization.
        Virchows Arch. 2001; 438: 248-253
        • Shiba H.
        • Mouri Y.
        • Komatsuzawa H.
        • et al.
        Macrophage inflammatory protein-3alpha and beta-defensin-2 stimulate dentin sialophosphoprotein gene expression in human pulp cells.
        Biochem Biophys Res Commun. 2003; 306: 867-871
        • Krisanaprakornkit S.
        • Kimball J.R.
        • Weinberg A.
        • Darveau R.P.
        • Bainbridge B.W.
        • Dale B.A.
        Inducible expression of human beta-defensin 2 by Fusobacterium nucleatum in oral epithelial cells: multiple signaling pathways and role of commensal bacteria in innate immunity and the epithelial barrier.
        Infect Immun. 2000; 68: 2907-2915
        • Yoshiba K.
        • Yoshiba N.
        • Iwaku M.
        Class II antigen-presenting dendritic cell and nerve fiber responses to cavities, caries, or caries treatment in human teeth.
        J Dent Res. 2003; 82: 422-427
        • Ackermans F.
        • Klein J.P.
        • Frank R.M.
        Ultrastructural location of Streptococcus mutans and Streptococcus sanguis antigens in carious human dentine.
        J Biol Buccale. 1981; 9: 203-217
        • Sloan A.J.
        • Perry H.
        • Matthews J.B.
        • Smith A.J.
        Transforming growth factor-beta isoform expression in mature human healthy and carious molar teeth.
        Histochem J. 2000; 32: 247-252
        • Piattelli A.
        • Rubini C.
        • Fioroni M.
        • Tripodi D.
        • Strocchi R.
        Transforming growth factor-beta 1 (TGF-beta 1) expression in normal healthy pulps and in those with irreversible pulpitis.
        Int Endod J. 2004; 37: 114-119
        • Tjaderhane L.
        • Palosaari H.
        • Wahlgren J.
        • Larmas M.
        • Sorsa T.
        • Salo T.
        Human odontoblast culture method: the expression of collagen and matrix metalloproteinases (MMPs).
        Adv Dent Res. 2001; 15: 55-58
        • Lucchini M.
        • Romeas A.
        • Couble M.L.
        • Bleicher F.
        • Magloire H.
        • Farges J.C.
        TGF beta 1 signaling and stimulation of osteoadherin in human odontoblasts in vitro.
        Connect Tissue Res. 2002; 43: 345-353
        • Farges J.C.
        • Romeas A.
        • Melin M.
        • Pin J.J.
        • Lebecque S.
        • Lucchini M.
        • et al.
        TGF-beta1 induces accumulation of dendritic cells in the odontoblast layer.
        J Dent Res. 2003; 82: 652-656
        • Li M.O.
        • Wan Y.Y.
        • Sanjabi S.
        • Robertson A.K.
        • Flavell R.A.
        • et al.
        Transforming growth factor-beta regulation of immune responses.
        Annu Rev Immunol. 2005; 24 (Epub 2005 Nov 8.): 99-146
        • Awawdeh L.
        • Lundy F.T.
        • Shaw C.
        • Lamey P.J.
        • Linden G.J.
        • Kennedy J.G.
        Quantitative analysis of substance P, neurokinin A and calcitonin gene-related peptide in pulp tissue from painful and healthy human teeth.
        Int Endod J. 2002; 35: 30-36
        • Rodd H.D.
        • Boissonade F.M.
        Immunocytochemical investigation of neurovascular relationships in human tooth pulp.
        J Anat. 2003; 202: 195-203
        • Kimberly C.L.
        • Byers M.R.
        Inflammation of rat molar pulp and periodontium causes increased calcitonin gene-related peptide and axonal sprouting.
        Anat Rec. 1988; 222: 289-300
        • Byers M.R.
        • Taylor P.E.
        • Khayat B.G.
        • Kimberly C.L.
        Effects of injury and inflammation on pulpal and periapical nerves.
        J Endod. 1990; 16: 78-84
        • Byers M.R.
        Effects of inflammation on dental sensory nerves and vice versa.
        Proc Finn Dent Soc. 1992; 88: 499-506
        • Rodd H.D.
        • Boissonade F.M.
        Innervation of human tooth pulp in relation to caries and dentition type.
        J Dent Res. 2001; 80: 389-393
        • Rodd H.D.
        • Boissonade F.M.
        Comparative immunohistochemical analysis of the peptidergic innervation of human primary and permanent tooth pulp.
        Arch Oral Biol. 2002; 47: 375-385
        • Bowles W.R.
        • Withrow J.C.
        • Lepinski A.M.
        • Hargreaves K.M.
        Tissue levels of immunoreactive substance P are increased in patients with irreversible pulpitis.
        J Endod. 2003; 29: 265-267
        • Rodd H.D.
        • Boissonade F.M.
        Substance P expression in human tooth pulp in relation to caries and pain experience.
        Eur J Oral Sci. 2000; 108: 467-474
        • Olgart L.
        • Kerezoudis N.P.
        Nerve-pulp interactions.
        Arch Oral Biol. 1994; 39: 47S-54S
        • Heyeraas K.J.
        • Kim S.
        • Raab W.H.
        • Byers M.R.
        • Liu M.
        Effect of electrical tooth stimulation on blood flow, interstitial fluid pressure and substance P and CGRP-immunoreactive nerve fibers in the low compliant cat dental pulp.
        Microvasc Res. 1994; 47: 329-343
        • Holzer P.
        Capsaicin: cellular targets, mechanisms of action, and selectivity for thin sensory neurons.
        Pharmacol Rev. 1991; 43: 143-201
        • Holzer P.
        Neurogenic vasodilatation and plasma leakage in the skin.
        Gen Pharmacol. 1998; 30: 5-11
        • Brain S.D.
        Sensory neuropeptides in the skin.
        in: Geppetti P. Holzer P. Neurogenic inflammation. CRC Press, Boca Raton, FL1996: 229-244
        • Vongsavan N.
        • Matthews B.
        Changes in pulpal blood flow and in fluid flow through dentine produced by autonomic and sensory nerve stimulation in the cat.
        Proc Finn Dent Soc. 1992; 88: 491-497
        • Heyeraas K.J.
        Pulpal hemodynamics and interstitial fluid pressure: balance of transmicrovascular fluid transport.
        J Endod. 1989; 15: 468-472
        • Heyeraas K.J.
        Pulpal, microvascular, and tissue pressure.
        J Dent Res. 1985; 64 (Spec No 585–589)
        • Tonder K.J.
        Vascular reactions in the dental pulp during inflammation.
        Acta Odontol Scand. 1983; 41: 247-256
        • Van Hassel H.J.
        Physiology of the human dental pulp.
        Oral Surg Oral Med Oral Pathol. 1971; 32: 126-134
        • Byers M.R.
        • Narhi M.V.
        Dental injury models: experimental tools for understanding neuroinflammatory interactions and polymodal nociceptor functions.
        Crit Rev Oral Biol Med. 1999; 10: 4-39
        • Caviedes-Bucheli J.
        • Camargo-Beltran C.
        • Gomez-la-Rotta A.M.
        • Moreno S.C.
        • Abello G.C.
        • Gonzalez-Escobar J.M.
        Expression of calcitonin gene-related peptide (CGRP) in irreversible acute pulpitis.
        J Endod. 2004; 30: 201-204
        • Calvo C.F.
        • Chavanel G.
        • Senik A.
        Substance P enhances IL-2 expression in activated human T cells.
        J Immunol. 1992; 148: 3498-3504
        • Nio D.A.
        • Moylan R.N.
        • Roche J.K.
        Modulation of T lymphocyte function by neuropeptides.
        J Immunol. 1993; 150: 5281-5288
        • Kincy-Cain T.
        • Bost K.L.
        Substance P-induced IL-12 production by murine macrophages.
        J Immunol. 1997; 158: 2334-2339
        • Park S.H.
        • Hsiao G.Y.
        • Huang G.T.
        Role of substance P and calcitonin gene-related peptide in the regulation of interleukin-8 and monocyte chemotactic protein-1 expression in human dental pulp.
        Int Endod J. 2004; 37: 185-192
        • Dunzendorfer S.
        • Kaser A.
        • Meierhofer C.
        • Tilg H.
        • Wiedermann C.J.
        Cutting edge: peripheral neuropeptides attract immature and arrest mature blood-derived dendritic cells.
        J Immunol. 2001; 166: 2167-2172
        • Dieu-Nosjean M.C.
        • Vicari A.
        • Lebecque S.
        • Caux C.
        Regulation of dendritic cell trafficking: a process that involves the participation of selective chemokines.
        J Leukoc Biol. 1999; 66: 252-262
        • Delneste Y.
        • Herbault N.
        • Galea B.
        • et al.
        Vasoactive intestinal peptide synergizes with TNF-alpha in inducing human dendritic cell maturation.
        J Immunol. 1999; 163: 3071-3075
        • Dray A.
        Inflammatory mediators of pain.
        Br J Anaesth. 1995; 75: 125-131
        • Cunha T.M.
        • Verri Jr, W.A.
        • Silva J.S.
        • Poole S.
        • Cunha F.Q.
        • Ferreira S.H.
        A cascade of cytokines mediates mechanical inflammatory hypernociception in mice.
        Proc Natl Acad Sci U S A. 2005; 102: 1755-1760
        • Oh S.B.
        • Tran P.B.
        • Gillard S.E.
        • Hurley R.W.
        • Hammond D.L.
        • Miller R.J.
        Chemokines and glycoprotein120 produce pain hypersensitivity by directly exciting primary nociceptive neurons.
        J Neurosci. 2001; 21: 5027-5035
        • Perkins M.N.
        • Kelly D.
        • Davis A.J.
        Bradykinin B1 and B2 receptor mechanisms and cytokine-induced hyperalgesia in the rat.
        Can J Physiol Pharmacol. 1995; 73: 832-836
        • Jonakait G.M.
        • Hart R.P.
        Immune cytokine regulation of sympathetic ganglion response to injury.
        Neuroimmunomodulation. 1995; 2: 236-240
        • Rittner H.L.
        • Machelska H.
        • Stein C.
        Leukocytes in the regulation of pain and analgesia.
        J Leukoc Biol. 2005; 78: 1215-1222
        • Casasco A.
        • Calligaro A.
        • Casasco M.
        • Springall D.R.
        • Polak J.M.
        • Poggi P.
        • et al.
        Peptidergic nerves in human dental pulp.
        Histochemistry. 1990; 95: 115-121
        • Mudie A.S.
        • Holland G.R.
        Local opioids in the inflamed dental pulp.
        J Endod. 2006; 32: 319-323
        • Gazelius B.
        • Brodin E.
        • Olgart L.
        • Panopoulos P.
        Evidence that substance P is a mediator of antidromic vasodilatation using somatostatin as a release inhibitor.
        Acta Physiol Scand. 1981; 113: 155-159
        • Lambrecht B.N.
        Immunologists getting nervous: neuropeptides, dendritic cells and T cell activation.
        Respir Res. 2001; 2: 133-138
        • Cabot P.J.
        • Carter L.
        • Gaiddon C.
        • et al.
        Immune cell-derived beta-endorphin.
        J Clin Invest. 1997; 100: 142-148
        • Mousa S.A.
        • Zhang Q.
        • Sitte N.
        • Ji R.
        • Stein C.
        beta-Endorphin-containing memory-cells and mu-opioid receptors undergo transport to peripheral inflamed tissue.
        J Neuroimmunol. 2001; 115: 71-78
        • Mattison G.D.
        • Haddix J.E.
        • Kehoe J.C.
        • Progulske-Fox A.
        The effect of Eikenella corrodens endotoxin on periapical bone.
        J Endod. 1987; 13: 559-565
        • Pitts D.L.
        • Williams B.L.
        • Morton Jr, T.H.
        Investigation of the role of endotoxin in periapical inflammation.
        J Endod. 1982; 8: 10-18
        • Hargreaves K.
        Pain mechanisms of pulpodentin complex.
        in: Hargreaves K.M. Goodis H.E. Seltzer and Bender’s dental pulp. Quintessence, Chicago2002: 181-203
        • Matsumoto H.
        • Sunakawa M.
        • Suda H.
        Do pulpal inflammatory changes modulate periodontal mechanoreceptor afferent activity?.
        in: Shimono M. Maeda T. Suda H. Takahashi K. Proceedings of the International Conference on Dentin/Pulp Complex 1995, Chiba, Japan. Quintessence, Chicago1995: 327-328
        • Tagger M.
        • Massler M.
        Periapical tissue reactions after pulp exposure in rat molars.
        Oral Surg Oral Med Oral Pathol. 1975; 39: 304-317
        • Yamasaki M.
        • Kumazawa M.
        • Kohsaka T.
        • Nakamura H.
        • Kameyama Y.
        Pulpal and periapical tissue reactions after experimental pulpal exposure in rats.
        J Endod. 1994; 20: 13-17
        • Baume L.J.
        Dental pulp conditions in relation to carious lesions.
        Int Dent J. 1970; 20: 309-337
        • Brannstrom M.
        • Lind P.O.
        Pulpal response to early dental caries.
        J Dent Res. 1965; 44: 1045-1050
        • Gordon S.
        • Taylor P.R.
        Monocyte and macrophage heterogeneity.
        Nat Rev Immunol. 2005; 5: 953-964
        • Kamal A.M.
        • Okiji T.
        • Kawashima N.
        • Suda H.
        Defense responses of dentin/pulp complex to experimentally induced caries in rat molars: an immunohistochemical study on kinetics of pulpal Ia antigen-expressing cells and macrophages.
        J Endod. 1997; 23: 115-120
        • Ohshima H.
        • Sato O.
        • Kawahara I.
        • Maeda T.
        • Takano Y.
        Responses of immunocompetent cells to cavity preparation in rat molars: an immunohistochemical study using OX6-monoclonal antibody.
        Connect Tissue Res. 1995; 32: 303-311
        • Izumi T.
        • Kobayashi I.
        • Okamura K.
        • Matsuo K.
        • Kiyoshima T.
        • Ishibashi Y.
        • et al.
        An immunohistochemical study of HLA-DR and alpha 1-antichymotrypsin- positive cells in the pulp of human non-carious and carious teeth.
        Arch Oral Biol. 1996; 41: 627-630
        • Maghazachi A.A.
        Compartmentalization of human natural killer cells.
        Mol Immunol. 2005; 42: 523-529
        • Walzer T.
        • Dalod M.
        • Robbins S.H.
        • Zitvogel L.
        • Vivier E.
        Natural-killer cells and dendritic cells: “l’union fait la force”.
        Blood. 2005; 106: 2252-2258
        • Kikuchi T.
        • Hahn C.L.
        • Tanaka S.
        • Barbour S.E.
        • Schenkein H.A.
        • Tew J.G.
        Dendritic cells stimulated with Actinobacillus actinomycetemcomitans elicit rapid gamma interferon responses by natural killer cells.
        Infect Immun. 2004; 72: 5089-5096
        • Raulet D.H.
        Interplay of natural killer cells and their receptors with the adaptive immune response.
        Nat Immunol. 2004; 5: 996-1002
        • Trinchieri G.
        Interleukin-12: a proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity.
        Annu Rev Immunol. 1995; 13: 251-276
        • Hahn C.L.
        • Best A.M.
        • Tew J.G.
        Cytokine induction by Streptococcus mutans and pulpal pathogenesis.
        Infect Immun. 2000; 68: 6785-6789
        • Hahn C.L.
        • Best A.M.
        • Tew J.G.
        Comparison of type 1 and type 2 cytokine production by mononuclear cells cultured with streptococcus mutans and selected other caries bacteria.
        J Endod. 2004; 30: 333-338
        • Jiang Y.
        • Russell T.R.
        • Schilder H.
        • Graves D.T.
        Endodontic pathogens stimulate monocyte chemoattractant protein-1 and interleukin-8 in mononuclear cells.
        J Endod. 1998; 24: 86-90
        • Hahn C.L.
        • Schenkein H.A.
        • Tew J.G.
        Endocarditis-associated oral streptococci promote rapid differentiation of monocytes into mature dendritic cells.
        Infect Immun. 2005; 73: 5015-5021
        • Sakurai K.
        • Okiji T.
        • Suda H.
        Co-increase of nerve fibers and HLA-DR- and/or factor-XIIIa-expressing dendritic cells in dentinal caries-affected regions of the human dental pulp: an immunohistochemical study.
        J Dent Res. 1999; 78: 1596-1608
        • Pietschmann P.
        • Cush J.J.
        • Lipsky P.E.
        • Oppenheimer-Marks N.
        Identification of subsets of human T cells capable of enhanced transendothelial migration.
        J Immunol. 1992; 149: 1170-1178
        • Rohnelt R.K.
        • Hoch G.
        • Reiss Y.
        • Engelhardt B.
        Immunosurveillance modelled in vitro: naive and memory T cells spontaneously migrate across unstimulated microvascular endothelium.
        Int Immunol. 1997; 9: 435-450
        • Marshall D.R.
        • Turner S.J.
        • Belz G.T.
        • Wingo S.
        • Andreansky S.
        • Sangster M.Y.
        • et al.
        Measuring the diaspora for virus-specific CD8+ T cells.
        Proc Natl Acad Sci USA. 2001; 98: 6313-6318
        • Masopust D.
        • Vezys V.
        • Usherwood E.J.
        • Cauley L.S.
        • Olson S.
        • Marzo A.L.
        • et al.
        Activated primary and memory CD8 T cells migrate to nonlymphoid tissues regardless of site of activation or tissue of origin.
        J Immunol. 2004; 172: 4875-4882
        • Klonowski K.D.
        • Lefrancois L.
        The CD8 memory T cell subsystem: integration of homeostatic signaling during migration.
        Semin Immunol. 2005; 17: 219-229
        • Chong B.F.
        • Murphy J.E.
        • Kupper T.S.
        • Fuhlbrigge R.C.
        E-selectin, thymus- and activation-regulated chemokine/CCL17, and intercellular adhesion molecule-1 are constitutively coexpressed in dermal microvessels: a foundation for a cutaneous immunosurveillance system.
        J Immunol. 2004; 172: 1575-1581
        • Sawa Y.
        • Yoshida S.
        • Shibata K.I.
        • Suzuki M.
        • Mukaida A.
        Vascular endothelium of human dental pulp expresses diverse adhesion molecules for leukocyte emigration.
        Tissue Cell. 1998; 30: 281-291
        • MacDonald K.P.
        • Munster D.J.
        • Clark G.J.
        • Dzionek A.
        • Schmitz J.
        • Hart D.N.
        Characterization of human blood dendritic cell subsets.
        Blood. 2002; 100: 4512-4520
        • Steinman R.M.
        • Hawiger D.
        • Nussenzweig M.C.
        Tolerogenic dendritic cells.
        Annu Rev Immunol. 2003; 21: 685-711
        • Schaerli P.
        • Willimann K.
        • Ebert L.M.
        • Walz A.
        • Moser B.
        Cutaneous CXCL14 targets blood precursors to epidermal niches for Langerhans cell differentiation.
        Immunity. 2005; 23: 331-342
        • Le Borgne M.
        • Etchart N.
        • Goubier A.
        • et al.
        Dendritic cells rapidly recruited into epithelial tissues via CCR6/CCL20 are responsible for CD8+ T cell crosspriming in vivo.
        Immunity. 2006; 24: 191-201
        • McWilliam A.S.
        • Nelson D.
        • Thomas J.A.
        • Holt P.G.
        Rapid dendritic cell recruitment is a hallmark of the acute inflammatory response at mucosal surfaces.
        J Exp Med. 1994; 179: 1331-1336
        • Ohshima H.
        • Nakakura-Ohshima K.
        • Takeuchi K.
        • Hoshino M.
        • Takano Y.
        • Maeda T.
        Pulpal regeneration after cavity preparation, with special reference to close spatio-relationships between odontoblasts and immunocompetent cells.
        Microsc Res Tech. 2003; 60: 483-490
        • Zhang J.
        • Kawashima N.
        • Suda H.
        • Nakano Y.
        • Takano Y.
        • Azuma M.
        The existence of CD11c+ sentinel and F4/80+ interstitial dendritic cells in dental pulp and their dynamics and functional properties.
        Int Immunol. 2006; 18: 1375-1384
        • Valladeau J.
        • Saeland S.
        Cutaneous dendritic cells.
        Semin Immunol Dendritic Cell Heterogenity. 2005; 17: 273-283
        • Nestle F.O.
        • Zheng X.G.
        • Thompson C.B.
        • Turka L.A.
        • Nickoloff B.J.
        Characterization of dermal dendritic cells obtained from normal human skin reveals phenotypic and functionally distinctive subsets.
        J Immunol. 1993; 151: 6535-6545
        • Torocsik D.
        • Bardos H.
        • Nagy L.
        • Adany R.
        Identification of factor XIII-A as a marker of alternative macrophage activation.
        Cell Mol Life Sci. 2005; 62: 2132-2139
        • Adany R.
        • Bardos H.
        Factor XIII subunit A as an intracellular transglutaminase.
        Cell Mol Life Sci. 2003; 60: 1049-1060
        • Hashimoto S.I.
        • Suzuki T.
        • Nagai S.
        • Yamashita T.
        • Toyoda N.
        • Matsushima K.
        Identification of genes specifically expressed in human activated and mature dendritic cells through serial analysis of gene expression.
        Blood. 2000; 96: 2206-2214
        • Okiji T.
        • Jontell M.
        • Belichenko P.
        • Bergenholtz G.
        • Dahlstrom A.
        Perivascular dendritic cells of the human dental pulp.
        Acta Physiol Scand. 1997; 159: 163-169
        • Ohshima H.
        • Maeda T.
        • Takano Y.
        The distribution and ultrastructure of class II MHC-positive cells in human dental pulp.
        Cell Tissue Res. 1999; 295: 151-158
        • Okiji T.
        • Suda H.
        • Kawashima N.
        • Kaneko T.
        • Sakurai K.
        Response of pulpal dendritic cells to microbial challenges across dentin.
        in: Ishikawa T. Takahashi K. Maeda T. Suda H. Shimono M. Inoue T. Proceedings of the International Conference on Dentin/Pulp Complex 2001, Chiba, Japan. Quintessence, Chicago2001: 24-30
        • Caux C.
        • Vanbervliet B.
        • Massacrier C.
        • Dezutter-Dambuyant C.
        • de Saint-Vis B.
        • Jacquet C.
        • et al.
        CD34+ hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to GM-CSF+TNF alpha.
        J Exp Med. 1996; 184: 695-706
        • Sallusto F.
        • Cella M.
        • Danieli C.
        • Lanzavecchia A.
        Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products.
        J Exp Med. 1995; 182: 389-400
        • Jeras M.
        • Bergant M.
        • Repnik U.
        In vitro preparation and functional assessment of human monocyte-derived dendritic cells-potential antigen-specific modulators of in vivo immune responses.
        Transpl Immunol. 2005; 14: 231-244
        • Geissmann F.
        • Jung S.
        • Littman D.R.
        Blood monocytes consist of two principal subsets with distinct migratory properties.
        Immunity. 2003; 19: 71-82
        • Maus U.A.
        • Janzen S.
        • Wall G.
        • et al.
        Resident alveolar macrophages are replaced by recruited monocytes in response to endotoxin-induced lung inflammation.
        Am J Respir Cell Mol Biol. 2006; 35 (Epub 2006 Mar 16.): 227-235
        • Austyn J.M.
        New insights into the mobilization and phagocytic activity of dendritic cells.
        J Exp Med. 1996; 183: 1287-1292
        • Steinman R.M.
        • Swanson J.
        The endocytic activity of dendritic cells.
        J Exp Med. 1995; 182: 283-288
        • Randolph G.J.
        • Sanchez-Schmitz G.
        • Liebman R.M.
        • Schakel K.
        The CD16(+) (FcgammaRIII(+)) subset of human monocytes preferentially becomes migratory dendritic cells in a model tissue setting.
        J Exp Med. 2002; 196: 517-527
        • Lutz M.B.
        • Schuler G.
        Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity?.
        Trends Immunol. 2002; 23: 445-449
        • Lebre M.C.
        • Burwell T.
        • Vieira P.L.
        • Lora J.
        • Coyle A.J.
        • Kapsenberg M.L.
        • et al.
        Differential expression of inflammatory chemokines by Th1- and Th2-cell promoting dendritic cells: a role for different mature dendritic cell populations in attracting appropriate effector cells to peripheral sites of inflammation.
        Immunol Cell Biol. 2005; 83: 525-535
        • Okiji T.
        • Jontell M.
        • Belichenko P.
        • Dahlgren U.
        • Bergenholtz G.
        • Dahlstrom A.
        Structural and functional association between substance P- and calcitonin gene-related peptide-immunoreactive nerves and accessory cells in the rat dental pulp.
        J Dent Res. 1997; 76: 1818-1824
        • Fristad I.
        • Heyeraas K.J.
        • Kvinnsland I.H.
        • Jonsson R.
        Recruitment of immunocompetent cells after dentinal injuries in innervated and denervated young rat molars: an immunohistochemical study.
        J Histochem Cytochem. 1995; 43: 871-879
        • Barbulescu K.
        • Becker C.
        • Schlaak J.F.
        • Schmitt E.
        • Meyer zum Buschenfelde K.H.
        • Neurath M.F.
        IL-12 and IL-18 differentially regulate the transcriptional activity of the human IFN-gamma promoter in primary CD4+ T lymphocytes.
        J Immunol. 1998; 160: 3642-3647
        • Doherty G.M.
        • Lange J.R.
        • Langstein H.N.
        • Alexander H.R.
        • Buresh C.M.
        • Norton J.A.
        Evidence for IFN-gamma as a mediator of the lethality of endotoxin and tumor necrosis factor-alpha.
        J Immunol. 1992; 149: 1666-1670
        • Abbas A.
        • Lichtman A.
        Cellular and molecular immunology. 5th ed. Saunders, Philadelphia2003
        • Zehnder M.
        • Delaleu N.
        • Du Y.
        • Bickel M.
        Cytokine gene expression—part of host defence in pulpitis.
        Cytokine. 2003; 22: 84-88
        • Sallusto F.
        • Lenig D.
        • Forster R.
        • Lipp M.
        • Lanzavecchia A.
        Two subsets of memory T lymphocytes with distinct homing potentials and effector functions.
        Nature. 1999; 401: 708-712
        • Potsch C.
        • Vohringer D.
        • Pircher H.
        Distinct migration patterns of naive and effector CD8 T cells in the spleen: correlation with CCR7 receptor expression and chemokine reactivity.
        Eur J Immunol. 1999; 29: 3562-3570
        • Yoshie O.
        • Imai T.
        • Nomiyama H.
        Chemokines in immunity.
        Adv Immunol. 2001; 78: 57-110
        • Schaerli P.
        • Ebert L.
        • Willimann K.
        • et al.
        A skin-selective homing mechanism for human immune surveillance T cells.
        The J Exp Med. 2004; 199: 1265-1275
        • Cao X.
        • Zhang W.
        • Wan T.
        • et al.
        Molecular cloning and characterization of a novel CXC chemokine macrophage inflammatory protein-2 gamma chemoattractant for human neutrophils and dendritic cells.
        J Immunol. 2000; 165: 2588-2595
        • Sfakianakis A.
        • Barr C.E.
        • Kreutzer D.L.
        Localization of the chemokine interleukin-8 and interleukin-8 receptors in human gingiva and cultured gingival keratinocytes.
        J Periodontal Res. 2002; 37: 154-160
        • Tuschil A.
        • Lam C.
        • Haslberger A.
        • Lindley I.
        Interleukin-8 stimulates calcium transients and promotes epidermal cell proliferation.
        J Invest Dermatol. 1992; 99: 294-298
        • Strieter R.M.
        • Kunkel S.L.
        • Elner V.M.
        • et al.
        Interleukin-8.
        Am J Pathol. 1992; 141: 1279-1284
        • Gillitzer R.
        • Goebeler M.
        Chemokines in cutaneous wound healing.
        J Leukoc Biol. 2001; 69: 513-521
        • Yang D.
        • Chen Q.
        • Hoover D.M.
        • et al.
        Many chemokines including CCL20/MIP-3alpha display antimicrobial activity.
        J Leukoc Biol. 2003; 74: 448-455
        • Cole A.M.
        • Ganz T.
        • Liese A.M.
        • Burdick M.D.
        • Liu L.
        • Strieter R.M.
        Cutting edge: IFN-inducible ELR- CXC chemokines display defensin-like antimicrobial activity.
        J Immunol. 2001; 167: 623-627
        • Hahn C-L.
        • Schenkein H.A.
        • Tew J.G.
        Streptococcus mutans elicits rapid potent IFN-g by NK cells.
        J Dent Res. 2004; 83: 1667