Advertisement

Effects of Mineral Trioxide Aggregate on Cell Survival, Gene Expression Associated with Mineralized Tissues, and Biomineralization of Cementoblasts

      Abstract

      The purpose of this study was to investigate the effects of mineral trioxide aggregate (MTA) on survival, mineralization, and expression of mineralization-related genes of cementoblasts. Immortalized cementoblasts (OCCM) were maintained with Dulbecco modified Eagle medium containing 10% fetal bovine serum. Methyl-thiazol-diphenyl-tetrazolium experiments were performed at 24 and 72 hours to evaluate bioactive components released by MTA (0.002-20 mg/mL) on the cell survival of OCCM. Von Kossa staining was used to evaluate biomineralization of OCCM cells. Images of cementoblasts were taken on day 3 by using inverted microscopy. Gene transcripts for bone sialoprotein (BSP), OCN, collagen type I (COL I), and osteopontin (OPN) were evaluated on days 3 and 5 by using semiquantitative reverse transcriptase polymerase chain reaction. The 20 mg/mL concentration of MTA was toxic for OCCM cells, whereas other concentrations of MTA tested exhibited similar cell numbers when compared with control group, and the 0.02 mg/mL concentration of MTA increased OCCM cell survival at 72 hours. Although an apparent decrease in mineralization was observed in the highest 3 concentrations of MTA used, 0.02 and 0.002 mg/mL concentrations of MTA induced greater biomineralization of OCCM cells than seen in the control. Moreover, increased BSP and COL I mRNA expression was observed at 0.02 and 0.002 mg/mL concentrations of MTA. MTA did not have a negative effect on the viability and morphology of cementoblasts and induced biomineralization of cementoblasts at the concentrations of 0.02 and 0.002 mg/mL. Based on these results MTA can be considered as a favorable material regarding cell-material interaction.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Endodontics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Lee S.J.
        • Monsef M.
        • Torabinejad M.
        Sealing ability of a mineral trioxide aggregate for repair of lateral root perforations.
        J Endod. 1993; 19: 541-544
        • Schmitt D.
        • Bogen G.
        Multifaceted use of ProRoot MTA root canal repair material.
        Pediatr Dent. 2001; 23: 326-330
        • Asgary S.
        • Parirokh M.
        • Egbbal M.J.
        • Brink F.
        Chemical differences between white and gray mineral trioxide aggregate.
        J Endod. 2005; 31: 101-103
      1. ProRoot MTA (mineral trioxide aggregate) root canal repair material material safety data sheet, DENTSPLY Tulsa Dental. Available at: www.tulsadental.dentsply.com. Accessed March 10, 2005.

        • Matt G.D.
        • Thorpe J.R.
        • Strother J.M.
        • McClanahan S.B.
        Comparative study of white and gray mineral trioxide aggregate (MTA) simulating a one-or two step apical barrier technique.
        J Endod. 2004; 30: 876-879
        • Roberts H.W.
        • Toth J.M.
        • Berzins D.W.
        • Charlton D.G.
        Mineral trioxide aggregate material use in endodontic treatment: a review of the literature.
        Dent Mater. 2008; 24: 149-164
        • Torabinejad M.
        • Higa R.K.
        • McKendry D.J.
        • Pitt Ford T.R.
        Dye leakage of four root end filling materials: effects of blood contamination.
        J Endod. 1994; 20: 159-163
        • Torabinejad M.
        • Hong C.U.
        • Pitt Ford T.R.
        • Kettering J.D.
        Cytotoxicity of four root end filling materials.
        J Endod. 1995; 21: 489-492
        • Mitchell P.J.
        • Pitt Ford T.R.
        • Torabinejad M.
        • McDonald F.
        Osteoblast biocompatibility of mineral trioxide aggregate.
        Biomaterials. 1999; 20: 167-173
        • Main C.
        • Mirzayan N.
        • Shabahang S.
        • Torabinejad M.
        Repair of root perforations using mineral trioxide aggregate: a long-term study.
        J Endod. 2004; 30: 80-83
        • Oviir T.
        • Pagoria D.
        • Ibarra G.
        • Geurtsen W.
        Effects of gray and white mineral trioxide aggregate on the proliferation of oral keratinocytes and cementoblasts.
        J Endod. 2006; 32: 210-213
        • Pitt Ford T.R.
        • Andreasen J.O.
        • Dorn S.O.
        • Kariyawasam S.P.
        Effect of various zinc oxide materials as root-end fillings on healing after replantation.
        Int Endod J. 1995; 28: 273-278
        • Torabinejad M.
        • Pitt Ford T.R.
        • McKendry D.J.
        • Abedi H.R.
        • Millar D.A.
        Histologic assessment of 17 mineral trioxide agregate as a roor-end filling in monkeys.
        J Endod. 1997; 23: 225-228
        • Thomson T.S.
        • Berry J.E.
        • Somerman M.J.
        • Kirkwood K.L.
        Cementoblasts maintain expression of osteocalcin in the presence of mineral trioxide aggregate.
        J Endod. 2003; 29: 407-412
        • Hachmeister D.R.
        • Schindler W.G.
        • Walker W.A.
        • Thomas D.D.
        The sealing ability and retention characteristics of mineral trioxide aggregate in a model of apexification.
        J Endod. 2002; 28: 386-390
        • White C.
        • Bryant N.
        Combined therapy of mineral trioxide aggregate and guided tissue regeneration in the treatment of external root resorption and an associated osseous defect.
        J Periodontol. 2002; 73: 1517-1521
        • Hamad H.A.
        • Tordik P.A.
        • McClanahan S.B.
        Furcation perforation repair comparing gray and white MTA: a dye extraction study.
        J Endod. 2006; 32: 337-340
        • Weldon J.K.
        • Pashley D.H.
        • Loushine R.J.
        • Weller R.N.
        • Kimbrough W.F.
        Sealing ability of mineral trioxide aggregate when used a furcation repair materials: a longitudinal study.
        J Endod. 2002; 28: 467-470
        • Ferris D.M.
        • Baumgartner J.C.
        Perforation repair comparing two types of mineral trioxide aggregate.
        J Endod. 2004; 30: 422-424
        • D'Errico J.A.
        • Berry J.E.
        • Ouyang H.
        • Strayhorn C.L.
        • Windle J.J.
        • Somerman M.J.
        Employing a transgenic animal model to obtain cementoblasts in vitro.
        J Periodontol. 2000; 71: 63-72
        • D'Errico J.A.
        • MacNeil R.L.
        • Takata T.
        • Berry J.E.
        • Strayhorn C.
        • Somerman M.J.
        Expression of bone associated markers by tooth root lining cells, in situ and in vitro.
        Bone. 1997; 20: 117-126
        • Chen D.
        • Chen H.
        • Feng J.Q.
        • et al.
        Osteoblastic cell lines drived from a transgenic mouse containing the osteocalcin promoter driving SV T-antigen.
        Mol Cell Differen. 1995; 3: 193-212
        • Balto H.A.
        Attachment and morphological behavior of human periodontal ligament fibroblasts to mineral trioxide aggregate: a scanning electron microscope study.
        J Endod. 2003; 30: 25-28
        • Keiser K.
        • Johnson C.C.
        • Tipton D.A.
        Cytotoxicity of mineral trioxide aggregate using human periodontal ligament fibroblasts.
        J Endod. 2000; 26: 288-291
        • Al-Rabeah E.
        • Perinpanayagam H.
        • MacFarland D.
        Human alveolar bone cells interact with ProRoot and tooth-colored MTA.
        J Endod. 2006; 32: 872-875
        • Pistorius A.
        • Willershausen B.
        • Marroquin B.B.
        Effect of apical root-end filling materials on gingival fibroblasts.
        Int Endod J. 2003; 36: 610-615
        • Lin C.P.
        • Chen Y.J.
        • Lee Y.L.
        • et al.
        Effects of root-end filling materials and eugenol on mitochondrial dehydrogenase activity and cytotoxicity to human periodontal ligament fibroblasts.
        J Biomed Mater Res Part B Appl Biomater. 2004; 71B: 429-440
        • Bonson S.
        • Jeansonne B.G.
        • Lallier T.E.
        Root-end filling materials alter fibroblast differentiation.
        J Dent Res. 2004; 83: 408-413
        • Koh E.T.
        • Torabinejad M.
        • Pitt Ford T.R.
        • Brady K.
        • McDonald F.
        Mineral trioxide aggregate stimulates a biological response in human osteoblasts.
        J Biomed Res. 1997; 37: 432-439
        • Mitchell P.J.C.
        • Pitt Ford T.R.
        • Torabinejad M.
        • McDonald F.
        Osteoblast biocompatibility of mineral trioxide aggregate.
        Biomaterials. 1999; 20: 167-173
        • Zhu Q.
        • Haglund R.
        • Safavi K.E.
        • Spangberg L.S.
        Adhesion of human osteoblasts on root-end filling materials.
        J Endod. 2000; 26: 404-406
        • Sengun A.
        • Buyukbas S.
        • Hakki S.S.
        Cytotoxic effects of dental desensitizers on human gingival fibroblasts.
        J Biomed Mater Res B Appl Biomater. 2006; 78: 131-137
        • Hakki S.S.
        • Nohutcu R.M.
        • Hakki E.E.
        • Berry J.E.
        • Akkaya M.S.
        • Somerman M.J.
        Dexamethasone and basic-fibroblast growth factor regulate markers of mineralization in cementoblasts in vitro.
        J Periodontol. 2005; 76: 1550-1558
        • Hakki S.S.
        • Berry J.E.
        • Somerman M.J.
        The effect of enamel matrix protein derivative on follicle cells in vitro.
        J Periodontol. 2001; 72: 679-687
        • Arens D.E.
        • Torabinejad M.
        Repair of furcal perforations with mineral trioxide aggregate.
        Oral Surg Oral Med Oral Pathol. 1996; 82: 84-88
        • Sluyk S.R.
        • Moon P.C.
        • Hartwell G.R.
        Evaluation of setting properties and retention characteristics of mineral trioxide aggregate when used as a furcation perforation repair material.
        J Endod. 1998; 24: 768-771
        • Osorio R.M.
        • Hefti A.
        • Vertucci F.J.
        • Shawley A.L.
        Cytotoxicity of endodontic materials.
        J Endod. 1998; 24: 91-96
        • Koh E.T.
        • Torabinejad M.
        • Pitt Ford T.R.
        • Brady K.
        • McDonald F.
        Mineral trioxide aggregate stimulates a biological response in human osteoblasts.
        J Biomed Res. 1997; 37: 432-439
        • Mitchell P.J.C.
        • Pitt Ford T.R.
        • Torabinejad M.
        • McDonald F.
        Osteoblast biocompatibility of mineral trioxide aggregate.
        Biomaterials. 1999; 20: 167-173
        • Zhu Q.
        • Haglund R.
        • Safavi K.E.
        • Spangberg L.S.
        Adhesion of human osteoblasts on root-end filling materials.
        J Endod. 2000; 26: 404-406
        • Huang T.H.
        • Ding S.J.
        • Hsu T.C.
        • Kao C.T.
        Effects of mineral trioxide aggregate (MTA) extracts on mitogen-activated protein kinase activity in human osteosarcoma cell line (U2OS).
        Biomaterials. 2003; 24: 3909-3913
        • Pellicioni G.A.
        • Ciapeti G.
        • Cenni E.
        • et al.
        Evaluation of osteoblast-like cell response to ProRoot MTA (mineral trioxide aggregate).
        J Mater Sci Mater Med. 2004; 15: 167-173
        • Camilleri J.
        • Monstein F.E.
        • Papaioannou S.
        • McDonald F.
        • Pitt Ford T.R.
        Biocompatibility of two commercial forms of mineral trioxide aggregate.
        Int Endod J. 2004; 37: 699-704
        • Tani-Ishii N.
        • Hamada N.
        • Watanabe K.
        • Tujimoto Y.
        • Teranaka T.
        • Umemoto T.
        Expression of bone extracellular matrix proteins on osteoblast cells in the presence of mineral trioxide.
        J Endod. 2007; 33: 836-839
        • Yasuda Y.
        • Ogawa M.
        • Arakawa T.
        • Kadowaki T.
        • Saito T.
        The effect of mineral trioxide aggregate on the mineralization ability of rat dental pulp cells: an in vitro study.
        J Endod. 2008; 34: 1057-1060
        • Hakki S.S.
        • Wang D.
        • Franceschi R.T.
        • Somerman M.J.
        Bone sialoprotein gene transfer to periodontal ligament cells may not be sufficient to promote mineralization in vitro or in vivo.
        J Periodontol. 2006; 77: 167-173