Advertisement
Basic Research| Volume 36, ISSUE 2, P322-328, February 2010

Nanoparticle-based Endodontic Antimicrobial Photodynamic Therapy

Published:December 16, 2009DOI:https://doi.org/10.1016/j.joen.2009.10.011

      Abstract

      Objective

      To study the in vitro effects of poly(lactic-co-glycolic acid) (PLGA) nanoparticles loaded with the photosensitizer methylene blue (MB) and light against Enterococcus faecalis (ATCC 29212).

      Materials and Methods

      The uptake and distribution of nanoparticles in E. faecalis in suspension was investigated by transmission electron microscopy (TEM) after incubation with PLGA complexed with colloidal gold particles for 2.5, 5, and 10 minutes. E. faecalis species were sensitized in planktonic phase and in experimentally infected root canals of human extracted teeth with MB-loaded nanoparticles for 10 minutes followed by exposure to red light at 665 nm.

      Results

      The nanoparticles were found to be concentrated mainly on the cell walls of microorganisms at all three time points. The synergism of light and MB-loaded nanoparticles led to approximately 2 and 1 log10 reduction of colony-forming units (CFUs) in planktonic phase and root canals, respectively. In both cases, mean log10 CFU levels were significantly lower than controls and MB-loaded nanoparticles without light.

      Conclusion

      The utilization of PLGA nanoparticles encapsulated with photoactive drugs may be a promising adjunct in antimicrobial endodontic treatment.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Endodontics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ørstavik D.
        • Pitt Ford T.R.
        Apical periodontitis. Microbial infection and host responses.
        in: Ørstavik D. Pitt Ford T.R. Essential endodontology: prevention and treatment of apical periodontitis. Blackwell Publishing Ltd Company, 1998
        • Byström A.
        • Sundqvist G.
        Bacteriologic evaluation of the effect of 0.5 percent sodium hypochlorite in endodontic therapy.
        Oral Surg Oral Med Oral Pathol. 1983; 55: 307-312
        • Siqueira Jr., J.F.
        • Araújo M.C.P.
        • Garcia P.F.
        • et al.
        Histological evaluation of the effectiveness of five instrumentation techniques for cleaning the apical third of root canals.
        J Endod. 1997; 23: 499-502
        • Haapasalo M.
        • Ørstavik D.
        In vitro infection and disinfection of dentinal tubules.
        J Dent Res. 1987; 66: 1375-1379
        • Berutti E.
        • Marine R.
        • Angeretti A.
        Penetration ability of different irrigants into dentinal tubules.
        J Endod. 1997; 23: 725-727
        • Rolph H.J.
        • Lennon A.
        • Riggio M.P.
        • et al.
        Molecular identification of microorganisms from endodontic infections.
        J Clin Microbiol. 2001; 39: 3282-3289
        • Siqueira J.F.
        • Rocas I.N.
        Nested PCR detection of Centipeda periodontii in primary endodontic infections.
        J Endod. 2004; 30: 135-137
        • Foschi F.
        • Cavrini F.
        • Montebugnoli L.
        • et al.
        Detection of bacteria in endodontic samples by polymerase chain reaction assays and association with defined clinical signs in Italian patients.
        Oral Microbiol Immunol. 2005; 20: 289-295
        • Radcliffe C.E.
        • Potouridou L.
        • Qureshi R.
        • et al.
        Antimicrobial activity of varying concentrations of sodium hypochlorite on the endodontic microorganisms Actinomyces israelii, A. naeslundii, Candida albicans and Enterococcus faecalis.
        Int Endod J. 2004; 37: 438-446
        • Distel J.W.
        • Hatton J.F.
        • Gillespie M.J.
        Biofilm formation in medicated root canals.
        J Endod. 2002; 28: 689-693
        • Raab O.
        Über die Wirkung Fluoreszierender Stoffe auf Infusorien.
        Z Biol. 1900; 39: 524-546
        • Dougherty T.J.
        • Gomer C.J.
        • Henderson B.W.
        • et al.
        Photodynamic therapy.
        J Natl Cancer Inst. 1998; 90: 889-905
        • Harris F.
        • Chatfield L.K.
        • Phoenix D.A.
        Phenothiazinium based photosensitisers-photodynamic agents with a multiplicity of cellular targets and clinical applications.
        Curr Drug Targets. 2005; 6: 615-627
        • Soukos N.S.
        • Chen P.S.
        • Morris J.T.
        • et al.
        Photodynamic therapy for endodontic disinfection.
        J Endod. 2006; 32: 979-984
        • Foschi F.
        • Fontana C.R.
        • Ruggiero K.
        • et al.
        Photodynamic inactivation of Enterococcus faecalis in dental root canals in vitro.
        Lasers Surg Med. 2007; 39: 782-787
        • George S.
        • Kishen A.
        Advanced noninvasive light-activated disinfection: assessment of cytotoxicity on fibroblast versus antimicrobial activity against Enterococcus faecalis.
        J Endod. 2007; 33: 599-602
        • George S.
        • Kishen A.
        Photophysical, photochemical, and photobiological characterization of methylene blue formulations for light-activated root canal disinfection.
        J Biomed Opt. 2007; (034029): 12
        • Fimple J.L.
        • Fontana C.R.
        • Foschi F.
        • et al.
        Photodynamic treatment of endodontic polymicrobial infection in vitro.
        J Endod. 2008; 34: 728-734
        • George S.
        • Kishen A.
        Augmenting the antibiofilm efficacy of advanced noninvasive light activated disinfection with emulsified oxidizer and oxygen carrier.
        J Endod. 2008; 34: 1119-1123
        • Lim Z.
        • Cheng J.L.
        • Lim T.W.
        • et al.
        Light activated disinfection: an alternative endodontic disinfection strategy.
        Aust Dent J. 2009; 54: 108-114
        • Soukos N.S.
        • Socransky S.S.
        • Mulholland S.E.
        • et al.
        Photomechanical drug delivery into bacterial biofilms.
        Pharm Res. 2000; 17: 405-409
        • Ogura M.A.A.
        • Blissett R.
        • Ruggiero K.
        • et al.
        Photomechanical wave-assisted molecular delivery in oral biofilms.
        World J Microbiol Biotechnol. 2007; 23: 1637-1646
        • Müller P.
        • Guggenheim B.
        • Schmidlin P.R.
        Efficacy of gasiform ozone and photodynamic therapy on a multispecies oral biofilm in vitro.
        Eur J Oral Sci. 2007; 115: 77-80
        • Fontana C.R.
        • Abernethy A.D.
        The antibacterial effect of photodynamic therapy in dental plaque-derived biofilms.
        J Periodontal Res. 2009; 44: 751-759
        • Tegos G.P.
        • Hamblin M.R.
        Phenothiazinium antimicrobial photosensitizers are substrates of bacterial multidrug resistance pumps.
        Antimicrob Agents Chemother. 2006; 50: 196-203
        • Koo Y.E.L.
        • Fan W.
        • Hah H.
        • et al.
        Photonic explorers based on multifunctional nanoplatforms for biosensing and photodynamic therapy.
        Appl Opt. 2007; 46: 1924-1930
        • Langer R.
        Drug delivery and targeting.
        Nature. 1998; 392: 5-10
        • Konan Y.N.
        • Berton M.
        • Gurny R.
        • et al.
        Enhanced photodynamic activity of meso-tetra(4-hydroxyphenyl)porphyrin by incorporation into sub-200 nm nanoparticles.
        Eur J Pharm Sci. 2003; 18: 241-249
        • McCarthy J.R.
        • Perez J.M.
        • Brückner C.
        • et al.
        Polymeric nanoparticle preparation that eradicates tumors.
        Nano Lett. 2005; 5: 2552-2556
        • Ricci-Júnior E.
        • Marchetti J.M.
        Zinc(II) phthalocyanine loaded PLGA nanoparticles for photodynamic therapy use.
        Int J Pharm. 2006; 310: 187-195
        • Esmaeili F.
        • Hosseini-Nasr M.
        • Rad-Malekshahi M.
        • et al.
        Preparation and antibacterial activity evaluation of rifampicin-loaded poly lactide-co-glycolide nanoparticles.
        Nanomedicine. 2007; 3: 161-167
        • Jeong Y.I.
        • Na H.S.
        • Seo D.H.
        • et al.
        Ciprofloxacin-encapsulated poly(dl-lactide-co-glycolide) nanoparticles and its antibacterial activity.
        Int J Pharm. 2008; 352: 317-323
        • Shenoy D.
        • Little S.
        • Langer R.
        • et al.
        Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs. 1. In vitro evaluations.
        Mol Pharm. 2005; 2: 357-366
        • Shenoy D.B.
        • Amiji M.M.
        Poly(ethylene oxide)-modified poly(epsilon-caprolactone) nanoparticles for targeted delivery of tamoxifen in breast cancer.
        Int J Pharm. 2005; 293: 261-270
        • Devalapally H.
        • Shenoy D.
        • Little S.
        • et al.
        Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs: part 3. Therapeutic efficacy and safety studies inovarian cancer xenograft model.
        Cancer Chemother Pharmacol. 2007; 59: 477-484
        • Panyam J.
        • Zhou W.Z.
        • Prabha S.
        • et al.
        Rapid endo-lysosomal escape of poly(DL-lactide-co-glycolide) nanoparticles: implications for drug and gene delivery.
        FASEB J. 2002; 16: 1217-1226
        • Tang W.
        • Xu H.
        • Kopelman R.
        • et al.
        Photodynamic characterization and in vitro application of methylene blue-containing nanoparticle platforms.
        Photochem Photobiol. 2005; 81: 242-249
        • Tada D.B.
        • Vono L.L.
        • Duarte E.L.
        • et al.
        Methylene blue-containing silica-coated magnetic particles: a potential magnetic carrier for photodynamic therapy.
        Langmuir. 2007; 23: 8194-8199
        • Zeina B.
        • Greenman J.
        • Purcell W.M.
        • et al.
        Killing of cutaneous microbial species by photodynamic therapy.
        Br J Dermatol. 2001; 144: 274-278
        • Soukos N.S.
        • Mulholland S.E.
        • Socransky S.S.
        • et al.
        Photodestruction of human dental plaque bacteria: enhancement of the photodynamic effect by photomechanical waves in an oral biofilm model.
        Lasers Surg Med. 2003; 33: 161-168
        • Bhatti M.
        • MacRobert A.
        • Meghji S.
        • et al.
        Effect of dosimetric and physiological factors on the lethal photosensitization of Porphyromonas gingivalis in vitro.
        Photochem Photobiol. 1997; 65: 1026-1031
        • Kömerik N.
        • Wilson M.
        Factors influencing the susceptibility of gram-negative bacteria to toluidine blue-mediated lethal photosensitisation.
        J Appl Microbiol. 2002; 92: 618-623