Advertisement
Basic Research| Volume 36, ISSUE 2, P312-314, February 2010

Determination of 4-Chloroaniline and Its Derivatives Formed in the Interaction of Sodium Hypochlorite and Chlorhexidine by Using Gas Chromatography

Published:December 14, 2009DOI:https://doi.org/10.1016/j.joen.2009.10.031

      Abstract

      Introduction

      The combination of sodium hypochlorite (NaOCl) and chlorhexidine (CHX) results in the formation of a precipitate. In a previous study, we demonstrated the formation of 4-chloroaniline (PCA) in the precipitate by using x-ray photon spectroscopy (XPS) and time of flight secondary ion mass spectrometry (TOF-SIMS). The TOF-SIMS results showed a peak at 127 amu, which is characteristic of 4-chloroaniline. However, this could also be characteristic of other isomers of 4-chloroaniline such as 2-chloroaniline and 3-chloroaniline.

      Aims and Methods

      The aim of this study was to further identify the precipitate by using gas chromatography–mass spectrometry (GC-MS).

      Results

      The results showed an absence of other aniline derivatives in the precipitate. Only PCA was found.

      Conclusions

      Further investigations of the precipitate should address the bioavailability of PCA leaching out from dentin and its cytotoxicity. Until the precipitate is studied further, it would appear prudent to minimize its formation by avoiding the use of CHX together with NaOCl.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Endodontics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kakehashi S.
        • Stanley H.R.
        • Fitzgerald R.J.
        The effects of surgical exposures of dental pulps in germ-free and conventional laboratory rats.
        Oral Surg Oral Med Oral Pathol. 1965; 20: 340-349
        • Bystrom A.
        • Sundqvist G.
        Bacteriologic evaluation of the efficacy of mechanical root canal instrumentation in endodontic therapy.
        Scand J Dent Res. 1981; 89: 321-328
        • Peters O.A.
        Current challenges and concepts in the preparation of root canal systems: a review.
        J Endod. 2004; 30: 559-567
        • Orstavik D.
        • Haapasalo M.
        Disinfection by endodontic irrigants and dressings of experimentally infected dentinal tubules.
        Endod Dent Traumatol. 1990; 6: 142-149
        • Peters L.B.
        • Wesselink P.R.
        Combinations of bacterial species in endodontic infections.
        Int Endod J. 2002; 35: 698-702
        • Leonardo M.R.
        • Tanomaru Filho M.
        • Silva L.A.
        • Nelson Filho P.
        • Bonifacio K.C.
        • Ito I.Y.
        In vivo antimicrobial activity of 2% chlorhexidine used as a root canal irrigating solution.
        J Endod. 1999; 25: 167-171
        • Kuruvilla J.R.
        • Kamath M.P.
        Antimicrobial activity of 2.5% sodium hypochlorite and 0.2% chlorhexidine gluconate separately and combined, as endodontic irrigants.
        J Endod. 1998; 24: 472-476
        • Ohara P.
        • Torabinejad M.
        • Kettering J.D.
        Antibacterial effects of various endodontic irrigants on selected anaerobic bacteria.
        Endod Dent Traumatol. 1993; 9: 95-100
        • Jeansonne M.J.
        • White R.R.
        A comparison of 2.0% chlorhexidine gluconate and 5.25% sodium hypochlorite as antimicrobial endodontic irrigants.
        J Endod. 1994; 20: 276-278
        • Ferguson J.W.
        • Hatton J.F.
        • Gillespie M.J.
        Effectiveness of intracanal irrigants and medications against the yeast Candida albicans.
        J Endod. 2002; 28: 68-71
        • White R.R.
        • Hays G.L.
        • Janer L.R.
        Residual antimicrobial activity after canal irrigation with chlorhexidine.
        J Endod. 1997; 23: 229-231
        • Delany G.M.
        • Patterson S.S.
        • Miller C.H.
        • Newton C.W.
        The effect of chlorhexidine gluconate irrigation on the root canal flora of freshly extracted necrotic teeth.
        Oral Surg Oral Med Oral Pathol. 1982; 53: 518-523
        • Siqueira J.F.
        • Batista M.M.
        • Fraga R.C.
        • de Uzeda M.
        Antibacterial effects of endodontic irrigants on black-pigmented gram-negative anaerobes and facultative bacteria.
        J Endod. 1998; 24: 414-416
        • Heling I.
        • Chandler N.P.
        Antimicrobial effect of irrigant combinations within dentinal tubules.
        Int Endod J. 1998; 31: 8-14
        • Basrani B.
        • Santos J.M.
        • Tjaderhane L.
        • et al.
        Substantive antimicrobial activity in chlorhexidine-treated human root dentin.
        Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2002; 94: 240-245
        • Komorowski R.
        • Grad H.
        • Wu X.Y.
        • Friedman S.
        Antimicrobial substantivity of chlorhexidine-treated bovine root dentin.
        J Endod. 2000; 26: 315-317
        • Basrani B.
        • Tjaderhane L.
        • Santos J.M.
        • et al.
        Efficacy of chlorhexidine- and calcium hydroxide-containing medicaments against Enterococcus faecalis in vitro.
        Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2003; 96: 618-624
        • Loe H.
        Does chlorhexidine have a place in the prophylaxis of dental diseases? review.
        J Periodontal Res Suppl. 1973; 12: 93-99
        • Okino L.A.
        • Siqueira E.L.
        • Santos M.
        • Bombana A.C.
        Figueiredo. Dissolution of pulp tissue by aqueous solution of chlorhexidine digluconate and chlorhexidine digluconate gel.
        Int Endod J. 2004; 37: 38-41
        • Zehnder M.
        Root canal irrigants.
        J Endod. 2006; 32: 389-398
        • Vivacqua-Gomes N.
        • Ferraz C.C.
        • Gomes B.P.
        • Zaia A.A.
        • Teixeira F.B.
        • Souza-Filho F.J.
        Influence of irrigants on the coronal microleakage of laterally condensed gutta-percha root fillings.
        Int Endod J. 2002; 35: 791-795
        • Basrani B.R.
        • Manek S.
        • Sodhi R.N.
        • Fillery E.
        • Manzur A.
        Interaction between sodium hypochlorite and chlorhexidine gluconate.
        J Endod. 2007; 33: 966-969
        • Basrani B.R.
        • Manek S.
        • Fillery E.
        Using diazotization to characterize the effect of heat or sodium hypochlorite on 2.0% chlorhexidine.
        J Endod. 2009; 35: 1296-1299
        • Kenkel J.
        Analytical chemistry for technicians.
        2nd ed. CRC Press, Boca Raton, FL1994
        • Schoffstall A.M.
        • Gaddis B.A.
        • Druelinger M.L.
        Microscale and miniscale organic chemistry laboratory experiments.
        2nd ed. McGraw Hill, New York2004
        • Chhabra R.S.
        • Huff J.E.
        • Haseman J.K.
        • Elwell M.R.
        • Peters A.C.
        Carcinogenicity of p-chloroaniline in rats and mice.
        Food Chem Toxicol. 1991; 29: 119-124
        • Burkhardt-Holm P.
        • Oulmi Y.
        • Schroeder A.
        • Storch V.
        • Braunbeck T.
        Toxicity of 4-chloraniline in early life stages of Zebrafish (Danio rerio): II—cytopathology and regeneration of liver and gills after prolonged exposure to waterborne 4 chloraniline.
        Arch Environ Contam Toxicol. 1999; 37: 85-102
        • Abe T.
        • Saito H.
        • Niikura Y.
        • Shigeoka T.
        • Nakano Y.
        Embryonic development assay with Daphnia magna: application to toxicity of aniline derivatives.
        Chemosphere. 2001; 45: 487-495
        • Bradbury S.P.
        • Dady J.M.
        • Fitzsimmons P.N.
        • Voit M.M.
        • Hammermeister D.E.
        • Erickson R.J.
        Toxicokinetics and metabolism of aniline and 4-chloroaniline in medaka (Oryzias latipes).
        Toxicol Appl Pharmacol. 1993; 118: 205-214
      1. Hazardous Substances Data Bank (HSDB). A database of the National Library of Medicines TOXNET System. Available at: http://toxnet.nlm.nih.gov. Accessed February 2007.