Effect of Heated Sodium Hypochlorite on the Viscoelastic Properties of Dentin Evaluated Using Dynamic Mechanical Analysis



      This study aimed to investigate the effect of the immersion of standardized dentin bars in 5% sodium hypochlorite (NaOCl) solutions at 60°C and 80°C on their viscoelastic properties using dynamic mechanical analysis.


      Eighteen intact teeth were used to produce 99 dentin bars of standard dimensions (12 × 1 × 2 mm) and randomly allocated to 6 groups (n = 15 each) for immersion in
      (1) saline at 26°C,
      (2) saline at 60°C,
      (3) saline at 80°C,
      (4) NaOCl at 26°C,
      (5) NaOCl at 60°C, and
      (6) NaOCl at 80°C. The bars were individually tested using dynamic mechanical analysis at baseline and after every 10 minutes of immersion in the test medium, up to 40 minutes. The effects of media, temperature, duration of exposure, and aspect ratio of bars on the storage modulus and tan delta were investigated using generalized estimating equations.


      There was a significant interaction between the test medium and the duration of immersion (P < .05). The storage modulus of specimens immersed in NaOCl at 60°C or 80°C decreased significantly (P < .0001) over time of exposure, but the changes in other groups were minimal and insignificant. The tan delta of specimens immersed in saline 80°C (P < .05), NaOCl at 60°C (P < .05), or 80°C (P < .0001) increased significantly over the time of exposure, but the change in NaOCl at 26°C was minimal. Other groups displayed negligible changes.


      NaOCl at 60°C or 80°C significantly reduced the elastic behavior but increased the hysteresis of dentin under cyclic loading.

      Key Words

      To read this article in full you will need to make a payment


      Subscribe to Journal of Endodontics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Bystrom A.
        • Sundqvist G.
        Bacteriologic evaluation of the effect of 0.5 percent sodium hypochlorite in endodontic therapy.
        Oral Surg Oral Med Oral Pathol. 1983; 55: 307-312
        • Naenni N.
        • Thoma K.
        • Zehnder M.
        Soft tissue dissolution capacity of currently used and potential endodontic irrigants.
        J Endod. 2004; 30: 785-787
        • Rosenfeld E.F.
        • James G.A.
        • Burch B.S.
        Vital pulp tissue response to sodium hypochlorite.
        J Endod. 1978; 4: 140-146
        • Sim T.P.
        • Knowles J.C.
        • Ng Y.L.
        • et al.
        Effect of sodium hypochlorite on mechanical properties of dentine and tooth surface strain.
        Int Endod J. 2001; 34: 120-132
        • Zhang K.
        • Tay F.R.
        • Kim Y.K.
        • et al.
        The effect of initial irrigation with two different sodium hypochlorite concentrations on the erosion of instrumented radicular dentin.
        Dent Mater. 2010; 26: 514-523
        • Rajasingham R.
        • Ng Y.L.
        • Knowles J.C.
        • Gulabivala K.
        The effect of sodium hypochlorite and ethylenediaminetetraacetic acid irrigation, individually and in alternation, on tooth surface strain.
        Int Endod J. 2010; 43: 31-40
        • Grigoratos D.
        • Knowles J.
        • Ng Y.L.
        • Gulabivala K.
        Effect of exposing dentine to sodium hypochlorite and calcium hydroxide on its flexural strength and elastic modulus.
        Int Endod J. 2001; 34: 113-119
        • Ramirez-Bommer C.
        • Gulabivala K.
        • Ng Y.L.
        • Young A.
        Estimated depth of apatite and collagen degradation in human dentine by sequential exposure to sodium hypochlorite and EDTA: a quantitative FTIR study.
        Int Endod J. 2018; 51: 469-478
        • Ryou H.
        • Amin N.
        • Ross A.
        • et al.
        Contributions of microstructure and chemical composition to the mechanical properties of dentin.
        J Mater Sci Mater Med. 2011; 22: 1127-1135
        • Miguez P.A.
        • Pereira P.N.
        • Atsawasuwan P.
        • Yamauchi M.
        Collagen cross-linking and ultimate tensile strength in dentin.
        J Dent Res. 2004; 83: 807-810
        • Sirtes G.
        • Waltimo T.
        • Schaetzle M.
        • Zehnder M.
        The effects of temperature on sodium hypochlorite short-term stability, pulp dissolution capacity, and antimicrobial efficacy.
        J Endod. 2005; 31: 669-671
        • Wang X.
        • Li X.
        • Bank R.A.
        • Agrawal C.M.
        Effects of collagen unwinding and cleavage on the mechanical integrity of the collagen network in bone.
        Calcif Tissue Int. 2002; 71: 186-192
        • Suwa Y.
        • Nam K.
        • Ozeki K.
        • et al.
        Thermal denaturation behavior of collagen fibrils in wet and dry environment.
        J Biomed Mater Res B Appl Biomater. 2016; 104: 538-545
        • Hayashi M.
        • Furuya Y.
        • Minoshima K.
        • et al.
        Effects of heating on the mechanical and chemical properties of human dentin.
        Dent Mater. 2012; 28: 385-391
        • Miles C.A.
        • Ghelashvili M.
        Polymer-in-a-box mechanism for the thermal stabilization of collagen molecules in fibers.
        Biophys J. 1999; 76: 3243-3252
        • Vangsness Jr., C.T.
        • Mitchell 3rd, W.
        • Nimni M.
        • et al.
        Collagen shortening. An experimental approach with heat.
        Clin Orthop Relat Res. 1997; 337: 267-271
        • Macedo R.G.
        • Verhaagen B.
        • Versluis M.
        • van der Sluis L.
        Temperature evolution of preheated irrigant injected into a root canal ex vivo.
        Clin Oral Investig. 2017; 21: 2841-2850
        • Iandolo A.
        • Amato M.
        • Dagna A.
        • et al.
        Intracanal heating of sodium hypochlorite: Scanning electron microscope evaluation of root canal walls.
        J Conserv Dent. 2018; 21: 569-573
        • Ryou H.
        • Romberg E.
        • Pashley D.H.
        • et al.
        Nanoscopic dynamic mechanical properties of intertubular and peritubular dentin.
        J Mech Behav Biomed Mater. 2012; 7: 3-16
        • Bozec L.
        • Odlyha M.
        Thermal denaturation studies of collagen by microthermal analysis and atomic force microscopy.
        Biophys J. 2011; 101: 228-236
        • Fathima N.N.
        • Madhan B.
        • Rao J.R.
        • et al.
        Interaction of aldehydes with collagen: effect on thermal, enzymatic and conformational stability.
        Int J Biol Macromol. 2004; 34: 241-247
        • Badii F.
        • Howell N.K.
        Elucidation of the effect of formaldehyde and lipids on frozen stored cod collagen by FT-Raman spectroscopy and differential scanning calorimetry.
        J Agric Food Chem. 2003; 51: 1440-1446
        • Rochdi A.
        • Foucat L.
        • Renou J.P.
        Effect of thermal denaturation on water-collagen interactions: NMR relaxation and differential scanning calorimetry analysis.
        Biopolymers. 1999; 50: 690-696
        • Watts D.C.
        • el Mowafy O.M.
        • Grant A.A.
        Temperature-dependence of compressive properties of human dentin.
        J Dent Res. 1987; 66: 29-32
        • Hayashi M.
        • Koychev E.V.
        • Okamura K.
        • et al.
        Heat treatment strengthens human dentin.
        J Dent Res. 2008; 87: 762-766
        • Hayashi M.
        • Okamura K.
        • Koychev E.V.
        • et al.
        Effects of rehydration on dentin strengthened by heating or UV irradiation.
        J Dent Res. 2010; 89: 154-158
        • Yamashita J.
        • Li X.
        • Furman B.R.
        • et al.
        Collagen and bone viscoelasticity: a dynamic mechanical analysis.
        J Biomed Mater Res. 2002; 63: 31-36
        • McGee M.P.
        • Morykwas M.
        • Shelton J.
        • Argenta L.
        Collagen unfolding accelerates water influx, determining hydration in the interstitial matrix.
        Biophys J. 2012; 103: 2157-2166
        • Amadori S.
        • Bonetti E.
        • Campari E.G.
        • et al.
        Anelastic phenomena associated to water loss and collagen degradation in human dentin.
        Mater Sci Eng C Mater Biol Appl. 2013; 33: 1455-1459
        • Forien J.-B.
        • Zizak I.
        • Fleck C.
        • et al.
        Water-mediated collagen and mineral nanoparticle interactions guide functional deformation of human tooth dentin.
        Chem Mater. 2016; 28: 3416-3427
        • Habelitz S.
        • Balooch M.
        • Marshall S.J.
        • et al.
        In situ atomic force microscopy of partially demineralized human dentin collagen fibrils.
        J Struct Biol. 2002; 138: 227-236
        • Sakae T.
        • Mishima H.
        • Kozawa Y.
        Changes in bovine dentin mineral with sodium hypochlorite treatment.
        J Dent Res. 1988; 67: 1229-1234
        • Eltit F.
        • Ebacher V.
        • Wang R.
        Inelastic deformation and microcracking process in human dentin.
        J Struct Biol. 2013; 183: 141-148
        • Lin M.
        • Xu F.
        • Lu T.J.
        • Bai B.F.
        A review of heat transfer in human tooth--experimental characterization and mathematical modeling.
        Dent Mater. 2010; 26: 501-513
        • Kishen A.
        • Murukeshan V.M.
        • Krishnakumar V.
        • Asundi A.
        Analysis on the nature of thermally induced deformation in human dentine by electronic speckle pattern interferometry (ESPI).
        J Dent. 2001; 29: 531-537