SCF/C-Kit Signaling Induces Self-Renewal of Dental Pulp Stem Cells

ABSTRACT

Introduction: The maintenance of a stem cell pool is imperative to enable healing processes in the dental pulp tissue throughout life. As such, knowing mechanisms underlying stem cell self-renewal is critical to understand pulp pathophysiology and pulp regeneration. The purpose of this study was to evaluate the impact of stem cell factor (SCF) signaling through its receptor tyrosine kinase (c-Kit) on the self-renewal of human dental pulp stem cells (hDPSCs). Methods: The hDPSCs were stably transduced with lentiviral vectors expressing shRNA-c-Kit or vector control. The impact of the SCF/c-Kit axis on hDPSC self-renewal was evaluated by using a pulpsphere assay in low attachment conditions and by evaluating the expression of polycomb complex protein Bmi-1 (master regulator of self-renewal) by Western blot and flow cytometry. Results: The c-Kit–silenced hDPSCs formed fewer pulpspheres when compared with hDPSCs transduced with control vector (P < .05). Evaluation of pulpsphere morphology revealed the presence of 3 distinct sphere types, ie, holospheres, merospheres, and paraspheres. Although c-Kit silencing decreased the number of holospheres compared with control cells (P < .05), it had no effect on the number of merospheres and paraspheres. Recombinant human stem cell factor (rhSCF) increased the number of holospheres (P < .05) and induced dose-dependent Bmi-1 expression in hDPSCs. As expected, the inductive capacity of rhSCF on Bmi-1 expression and fraction of Bmi-1–positive cells was inhibited when we silenced c-Kit in hDPSCs. Conclusions: These results unveiled the role of SCF/c-Kit signaling on the self-renewal of hDPSCs and suggested that this pathway enables long-term maintenance of stem cell pools in human dental pulps. (J Endod 2020;46:S56–S62.)

KEY WORDS

Pertivascular niche; pulp biology; regenerative endodontics; stemness; tissue regeneration

Stem cells are maintained in specialized niches where they are relatively quiescent until external signals (eg, tissue wound) disrupt this equilibrium and drive their fate toward differentiation into cells that orchestrate tissue regeneration. The maintenance of a tissue-specific stem cell pool is critical for the function of human organs and most human tissues (except for enamel). Notably, it requires symmetric cell division through the process of self-renewal. However, very little is known about the process of stem cell self-renewal in the dental pulp tissue. We have postulated that understanding the biology of stem cell niches and maintenance of stem cell pools via self-renewal will provide insights into mechanisms that maintain dental pulp tissue homeostasis as well as provide information that can be exploited in regenerative endodontics. Here, we performed studies that evaluated the impact of stem cell factor (SCF) signaling through its receptor tyrosine kinase (c-Kit) on the self-renewal of human dental pulp stem cells (hDPSCs).

The long-term maintenance and ability of tissue self-repair require the function of stem cell niches. Stem cells can be activated to replace terminally differentiated cells and to regulate healing responses. We have observed that stem cells are located around blood vessels in pertivascular niches in human dental pulps. It is known that a key function of the pertivascular niche is to maintain the survival and self-renewal of stem cells in physiological conditions and in diseases such as cancer. As such, understanding the molecular crosstalk between the stem cells and the other cells from the perivascular niche (eg, endothelial cells, fibroblasts) is critical to understand the pathobiology of tissue homeostasis and tissue response to injury.
It has been long described that the ability of growing spheres under ultra-low attachment and low-serum conditions is a common feature of physiological and pathologic stem cells. Under these conditions, each sphere is derived from the clonal expansion of one stem cell, whereas non-stem cells typically undergo apoptosis. Therefore, an increase in the number of spheres on dissociation and in vitro passaging to new ultra-low attachment plates is representative of the ability of these cells to self-renew, i.e., generate daughter stem cells on division. We have recently observed that hDPSCs form spheres and express higher levels of Bmi-1, an inducer of stem cell self-renewal, when cultured in ultra-low attachment plates when compared with hDPSCs cultured in standard plates.

A seminal article from the Morrison laboratory defined the role of endothelial cell-secreted factors in the maintenance of the hematopoietic stem cell niche. They showed that endothelial cell-secreted SCF signaling through its receptor c-Kit induces self-renewal, migration, and survival of stem cells and is required for maintenance of hematopoietic perivascular niches. Notably, c-Kit was shown to be a marker for a subpopulation of dental pulp progenitor cells. We know that hDPSCs reside in the perivascular niche in close proximity to endothelial cells that secrete SCF. We also know that hDPSCs express c-Kit. However, we do not know the signaling pathway that induces Bmi-1 expression and self-renewal in hDPSCs. Here, we hypothesized that SCF signaling through c-Kit induces Bmi-1 and maintains hDPSC self-renewal.

MATERIALS AND METHODS

Cell Culture
We used hDPSCs isolated from permanent teeth (gift from Dr Songtao Shi), as described previously. The hDPSCs on passages 3–7 were cultured in alpha-MEM (Invitrogen, Carlsbad, CA) supplemented with 15% fetal bovine serum (Invitrogen) and 1% penicillin/streptomycin (Invitrogen) at 37°C and 5% CO₂.

Lentiviral-Mediated Gene Silencing
Gene silencing was performed with lentiviral vectors encoding short hairpin RNA (shRNA) constructs. Briefly, 293T cells were transiently co-transfected with lentivirus packaging vector psPAX2, PMD2, and shRNA-C (scrambled vector control) and shRNA-c-kit (Vector Core, University of Michigan) with calcium phosphate. We used supernatants containing the lentiviruses to infect passage 3 hDPSCs overnight, and then cells were selected with 1 μg/mL puromycin (Invitrogen, San Diego, CA) for at least 1 week. Gene silencing efficiency was determined by Western blot.

Pulpisphere Assay
The hDPSCs stably transduced with shRNA-c-Kit or shRNA-C were cultured in 6-well ultra-low attachment plates (Corning, Corning, NY) for 10 days with alpha-MEM (Invitrogen) supplemented with 0 or 20 ng/mL recombinant human SCF (rhSCF). For sphere passaging, cells were exposed to 0.25% trypsin for 5 minutes and then mechanically dissociated. Trypsin neutralizing solution (Lonza, Basel, Switzerland) was used to neutralize trypsin. Cells were counted, diluted to 1500 per 3 mL, and then added to new 6-well ultra-low attachment plates. Colonies of 25 cells or more were considered spheres.

Flow Cytometry Staining for Pulpspheres
After culturing for 3–5 days, spheres were collected in a glass slide by using a cytospin tank at 4°C at 1500 rpm for 10 minutes. Once spheres were attached to the glass slide, hematoxylin-eosin was used to stain the cells, as follows. Spheres were covered with a drop of hematoxylin for 30 seconds, washed with distilled water, and then stained with eosin for 2 minutes. Slides were washed with tap water twice for 2 minutes, and then a coverslip was mounted. Images were analyzed by using NIS Elements (Nikon, Tokyo, Japan).

Flow Cytometry
The hDPSCs were trypsinized, harvested, and aliquoted at 10⁶ cells/100 μL into fluorescence-activated cell sorter tubes. Cells were resuspended in fixation buffer (BD Biosciences, San Jose, CA), incubated for 10 minutes, and washed 2 times with phosphate-buffered saline. Cells were then permeabilized with 250 μL of cold Perm Buffer III PhosFlow (BD Biosciences) on ice for 30 minutes. Cells were resuspended in 100 μL Flow Cytometry Staining Buffer (BD Biosciences) in presence of Alexa Fluor 647 mouse anti-human Bmi-1 (BD Biosciences) or Alexa Fluor 647 mouse immunoglobulin G1 (R&D Systems, Minneapolis, MN). Cells were mixed gently and incubated at 4°C for 30 minutes in the dark before flow cytometric analysis.

Western Blot
Cells were lysed in NP40 buffer, and proteins (20–50 μg/lane) were electrophoresed in sodium dodecyl sulfate-polyacrylamide gel and transferred to nitrocellulose membranes (Protran; Whatman, Dassel, Germany). Membranes were incubated at 4°C overnight with primary antibodies as follows: mouse anti-human SCF, mouse anti-human CD117/c-Kit, mouse anti-human Bmi-1, or mouse anti-human GAPDH (R&D Systems). SuperSignal West Pico Chemiluminescent Substrate (Pierce, Rockford, IL) was used to visualize immunoreactive proteins. Here, we used dental pulp cells that outgrew from partially digested human pulp tissue specimens, periodontal ligament cells obtained commercially (hPDlF; Lonza, Walkersville, MD), and stem cells from human exfoliated deciduous teeth (SHED) (gift from Songtao Shi) as control cell types.

Reverse Transcriptase Polymerase Chain Reaction
Total RNA was extracted with TRIzol reagent (Invitrogen), and reverse transcriptase polymerase chain reaction (RT-PCR) reactions were performed with Superscript III one-step RT-PCR system with Platinum Taq DNA polymerase (Thermo Fisher Scientific, Waltham, MA) according to manufacturer’s instructions. RNA was extracted from human dental pulp cells, cells from the periodontal ligament, hDPSCs, and SHED. Primers were the following: c-Kit (sense 5'-tcatcgtgggtgagggaa-3' and anti-sense 3'-acagttttgtggtgtgtc-5'), SCF (sense 5'-cgcgtctctttgatccactc-3' and anti-sense 5'-gtggtggataaggccact-5'), Bmi-1 (sense 5'-acggtgcttcaataagta-3' and anti-sense 5'-gcatacagcgctcgtc-5'), and GAPDH (sense 5'-gccctcttcatgcctcaact-3' and anti-sense 3'-acccaccttcttgatgtc-5').

Statistical Analysis
All in vitro experiments had a sample size of 3 (n = 3) and were performed 3 independent times to verify reproducibility of the data. The numeric data obtained from gene expression, RT-PCR, and flow cytometry were analyzed by analysis of variance (P < .05), with the Tukey test used as post hoc. Statistical analyses were performed by using GraphPad Prism (GraphPad Software, San Diego, CA).

RESULTS
SCF Signaling through c-Kit Regulates hDPSC Self-Renewal
To begin to understand the impact of SCF signaling through c-Kit in dental pulp stem...
cells, we performed Western blots (Fig. 1A) and RT-PCR (Fig. 1B) that demonstrated the expression of this ligand-receptor pair in dental pulp cells, periodontal ligament cells, hDPSCs, and SHED. To study the role of c-Kit in SCF signaling, we generated c-Kit–silenced hDPSCs on stable transduction of lentiviral vectors encoding shRNA-c-Kit (Fig. 1C and D). Because gene silencing was more effective with shRNA clone “b” (Fig. 1D), this shRNA sequence was used throughout this work. Control cells were transduced with vectors encoding scramble shRNA sequences and used at the same passage as the shRNA-c-Kit transduced cells here and throughout this project.

To evaluate the effect of c-Kit signaling on stemness, we performed the pulpsphere assay where hDPSC were cultured in ultra-low attachment plates (Fig. 2A). We noticed that c-Kit–silenced cells showed reduced sphere-forming capacity at both 3 and 5 days (P < .05) of culture in low conditions (Fig. 2B). To evaluate the role of this signaling pathway on self-renewal, we trypsinized the 1st passage (primary) pulpspheres and passed them to new plates to generate 2nd passage (secondary) spheres. Remarkably, c-Kit–silenced hDPSCs formed a few aggregates but were not able to form pulpspheres (Fig. 2B), demonstrating the major role of c-Kit silencing on the sphere-forming capacity of hDPSCs. In parallel experiments, we tested the hypothesis that culture in excess rhSCF rescues the sphere-forming capacity of c-Kit–silenced hDPSCs. Quantification of these data demonstrated that even in presence of high levels of rhSCF, c-Kit–silenced hDPSCs showed fewer primary spheres and no secondary spheres (P < .05) when compared with control hDPSCs (Fig. 2C).

SCF Induces Bmi-1 Expression

To begin to understand the mechanisms underlying the effect of SCF in hDPSC self-renewal, we exposed these cells to increasing concentrations of rhSCF and evaluated expression of Bmi-1 by Western blot. We observed that rhSCF caused a dose-dependent increase in Bmi-1 expression in control hDPSCs (Fig. 3A). As expected, we did not observe changes in c-Kit and intracellular SCF in these cells exposed to rhSCF (Fig. 3A). In contrast, the inductive capacity of rhSCF on Bmi-1 expression was largely abrogated in c-Kit–silenced hDPSCs (Fig. 3A), further demonstrating the impact of c-Kit signaling on rhSCF-mediated responses. In confirmatory experiments using an alternate method (ie, flow cytometry), we observed that rhSCF induced a substantial increase (P < .05) in the fraction of Bmi-1–positive control hDPSCs (Fig. 3B). Interestingly, when c-Kit–silenced cells were examined by flow cytometry, we observed that rhSCF did increase the fraction of Bmi-1–positive cells but not to the same extent as in control hDPSCs (Fig. 3B).

Pulpsphere Classification Assay

To further understand the impact of SCF signaling through c-Kit on primary pulpspheres (Fig. 4A), we classified them according to Almeida et al16. They defined the following stem cell sphere types:

1. holosphere, where there is a more dense mass of cells and they are organized in a very round, uniform manner;
2. merospheres, where the stem cells are less organized and not as dense; and
3. paraspheres, where there are fewer cells and they are not organized in any specific shape (Fig. 4B). We observed that treatment with rhSCF increased the number of holospheres (P < .05), but not the number of merospheres or paraspheres (P > .05) (Fig. 4C). Notably, c-Kit silencing mediated a significant decrease in the number of holospheres (P > .05) but had no inhibitory effect on the number of merospheres or paraspheres (Fig. 4C).

DISCUSSION

The ability of the dental pulp to heal and regenerate on differentiation of new odontoblast-like cells17,18 suggested that this tissue contained stem cells. These initial observations were confirmed by the seminal publication from Songtao Shi’s group that demonstrated the existence and function of hDPSCs15. Our group showed that stem cells from the dental pulp differentiate into tubular dentin-making odontoblasts19,20 and functional blood vessels that anastomize with the host vasculature19,21,22. These results, together with many other studies from laboratories worldwide, demonstrated the
FIGURE 2 – Dental pulpsphere formation assay. (A) Panel showing DPSC-shRNA-c-Kit and DPSC-shRNA-Control cells in the presence or absence of 20 ng/ml rhSCF in ultra-low attachment plates. (B) Graph showing pulpsphere counts of untreated DPSC-shRNA-c-Kit or DPSC-shRNA-Control cells at days 3 and 5 for both primary and secondary passage spheres. (C) Graph showing pulpsphere counts of DPSC-shRNA-c-Kit and DPSC-shRNA-Control cells exposed to SCF at days 3 and 5 for both primary and secondary passage spheres. Asterisks depict statistical significance at $P < .05$.

FIGURE 3 – c-Kit silencing inhibits expression of Bmi-1, a master regulator of self-renewal. (A) Western blot showing expression of Bmi-1 in DPSC-shRNA-c-Kit or DPSC-shRNA-Control cells in presence of 0–50 ng/mL rhSCF. (B) Graph depicting flow cytometry data for percentage of Bmi-1–positive DPSC-shRNA-c-Kit or DPSC-shRNA-Control cells on treatment with 0 or 20 ng/mL rhSCF. Different lowercase letters indicate statistical significance at $P < .05$. Unt., untreated.
multipotency of dental pulp stem cells. However, little is known about the other major stem cell hallmark, ie, the capacity of maintaining a stem cell pool through the process of self-renewal. Here, we unveiled the function of SCF signaling through c-Kit in the induction of self-renewal of dental pulp stem cells.

SCF is a powerful chemokine that binds to the c-Kit receptor and induces progenitor cell recruitment and self-renewal in hematopoietic perivascular niches. Pan et al showed that SCF stimulation induces migration, angiogenesis, and collagen remodeling by dental pulp progenitor cells. Here, we observed that dental pulp stem cells of permanent and primary teeth express SCF and c-Kit, raising the possibility of a functional role for SCF signaling through c-Kit in the regulation of stem cell self-renewal in dental pulp tissue.

In attempt to mimic the in vivo microenvironment for stem cells, several 3-dimensional (3D) culture systems have been developed. The formation of a 3D sphere, a spherical cluster of cells formed by self-renewal capacity of stem cells under low attachment, is one of the most widely used techniques for in vitro studies of stem cells. In general, stem cell spheres also have a greater multilineage differentiation capacity compared with their corresponding monolayer cells, suggesting that 3D sphere culture may enable the maintenance of stemness properties. In our study, DPSC-shRNA-c-Kit cells formed few primary spheres in serum-free, low attachment conditions and did not generate any secondary spheres on passaging. In contrast, vector control cells formed primary and secondary spheres on passaging. The ability to form secondary spheres demonstrates the ability of these cells to self-renew, ie, generate daughter stem cells on symmetric division. These data gave us the first indication that SFC/c-Kit signaling is involved in the maintenance of stem cell pools in the dental pulp.

FIGURE 4 Classification of dental pulpspheres according to shape/size. (A) Visualization of pulpspheres generated by DPSC-shRNA-c-Kit or DPSC-shRNA-Control cells in low attachment conditions. (B) Classification of spheres as holospheres, merospheres, and parospheres. (C) Graph depicting number of holospheres, merospheres, or parospheres generated by DPSC-shRNA-c-Kit or DPSC-shRNA-Control cells treated with 0 or 20 ng/mL rhSCF. Different lowercase letters indicate statistical significance at $P < .05$.

Cucco et al. JOE Volume 46, Number 9S, September 2020
Seminal studies have demonstrated a correlation between stem cell properties and the morphology of colonies generated by single cells from hair follicles29, epidermal keratinocytes30, and head and neck cancer16,31. To further understand the impact of c-Kit signaling on the stemness of hDPSCs, we classified the pulpspheres according to their shape and size according to a method used by the Castilho laboratory to study distinct populations of head and neck cancer stem cells16. Interestingly, we observed here that c-Kit–silenced hDPSCs generated fewer holospheres, when compared with vector control hDPSCs. In contrast, the number of merospheres and paraspheres remained the same. It is believed that holospheres represent a purer population of stem cells in cancer models. As such, we postulate that SCF signaling through c-Kit may have more impact on holospheres than in other sphere subtypes because true stem cells are more “addicted” to this pathway. However, further studies are necessary to fully address this hypothesis.

It has been shown that Bmi-1 is necessary for efficient self-renewal of hematopoietic stem cells, as well as adult peripheral and central nervous system neural stem cells11,12. We observed here that Bmi-1 expression and the fraction of Bmi-1–positive cells are increased when hDPSCs are exposed to SCF and that c-Kit silencing partially abrogated these responses. These data support our pulpsphere assay findings, because Bmi-1 is considered a master regulator of stemness and self-renewal11. Considering the fact that stem cells reside in the perivascular niche in human pulps6, the data presented here indicate that a crosstalk initiated by endothelial cell–derived SCF signaling through its receptor c-Kit triggers Bmi-1 expression in dental pulp stem cells. Such pathways might play a key role in the maintenance of a stem cell pool in the dental pulp tissue throughout the life of the tooth. Testing of this hypothesis through the use of in vivo models is ongoing work in our laboratory.

ACKNOWLEDGMENTS

The authors thank Dr Songtao Shi (University of Pennsylvania) for the gift of DPSC and SHED cells.

This work was funded by grant R01-DE21410 from NIH/NIDCR (JEN).

The authors deny any conflicts of interest related to this article.

REFERENCES

