Abstract
Introduction
The purpose of this study was to classify 10 cone-beam computed tomographic (CBCT)
devices using a ranking model according to the detection of fine endodontic structures.
Methods
A dedicated dentate anthropomorphic phantom was scanned 2 times using 10 CBCT devices
without any metal (metal-free condition) and with an endodontically treated tooth
containing a metallic post (metal condition). A reference image acquired on an industrial
micro-CT scanner was used to register all CBCT images, yielding corresponding anatomic
slices. Afterward, 3 experienced observers assessed all acquired CBCT images for their
ability to assess a narrow canal, isthmus, and apical delta ramification using a categoric
rank from 1 (best) to 10 (worst). Fleiss kappa statistics were used to calculate intra-
and interobserver agreements for each CBCT device separately. Based on the observers’
scores, general linear mixed models were applied to compare image quality among different
CBCT devices for performing endodontic diagnostic tasks (α = .05).
Results
The 10 CBCT devices performed differently for the evaluated endodontic tasks (P < .05), with 3 devices performing better for endodontic feature detection. Yet, in
the presence of metal, only 2 devices were able to keep a high level of endodontic
feature detection.
Conclusions
The evaluated endodontic tasks were CBCT device dependent, and their detection was
influenced by the presence of metal.
Key Words
To read this article in full you will need to make a payment
Purchase one-time access:
Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online accessOne-time access price info
- For academic or personal research use, select 'Academic and Personal'
- For corporate R&D use, select 'Corporate R&D Professionals'
Subscribe:
Subscribe to Journal of EndodonticsAlready a print subscriber? Claim online access
Already an online subscriber? Sign in
Register: Create an account
Institutional Access: Sign in to ScienceDirect
References
- The potential applications of cone beam computed tomography in the management of endodontic problems.Int Endod J. 2007; 40: 818-830
- CBCT for the assessment of second mesiobuccal (MB2) canals in maxillary molar teeth: effect of voxel size and presence of root filling.Int Endod J. 2013; 46: 870-876
- Feasibility of cone-beam computed tomography in detecting lateral canals before and after root canal treatment: an ex vivo study.J Endod. 2017; 43: 1014-1017
- Endodontic applications of cone-beam volumetric tomography.J Endod. 2007; 33: 1121-1132
- Ex vivo detection of apical delta in premolars: a comparative study using periapical radiography, cone-beam computed tomography, and micro-computed tomography.J Endod. 2019; 45: 549-553
- Comparison of five cone beam computed tomography systems for the detection of vertical root fractures.J Endod. 2010; 36: 126-129
- Evaluation of three imaging techniques for the detection of vertical root fractures in the absence and presence of gutta-percha root fillings.Int Endod J. 2012; 45: 1004-1009
- Diagnostic ability of a cone-beam computed tomography scan to assess longitudinal root fractures in prosthetically treated teeth.J Endod. 2010; 36: 1879-1882
- Quantitative evaluation of metal artifacts using different CBCT devices, high-density materials and field of views.Clin Oral Implants Res. 2017; 28: 1509-1514
- Dental cone beam CT and its justified use in oral health care.JBR-BTR. 2011; 94: 254-265
- Cone beam computed tomography in implant dentistry: recommendations for clinical use.BMC Oral Health. 2018; 18: 88
- Cone-beam computed tomographic analysis of middle mesial canals and isthmus in mesial roots of mandibular first molars-prevalence and related factors.J Conserv Dent. 2018; 21: 526-530
- Evaluation of root canal anatomy of maxillary premolars using swept-source optical coherence tomography in comparison with dental operating microscope and cone beam computed tomography.Photomed Laser Surg. 2018; 36: 487-492
- Accuracy of detecting vertical root fractures in non-root filled teeth using cone beam computed tomography: effect of voxel size and fracture width.Int Endod J. 2019; 52: 887-898
- Detection accuracy of root fractures in cone-beam computed tomography images: a systematic review and meta-analysis.Int Endod J. 2016; 49: 646-654
- Cone beam computed tomography for the diagnosis of vertical root fractures: a systematic review of the literature and meta-analysis.Oral Surg Oral Med Oral Pathol Oral Radiol. 2014; 118: 593-602
- Assessment of vertical root fractures using three imaging modalities: cone beam CT, intraoral digital radiography and film.Dentomaxillofac Radiol. 2012; 41: 91-95
- The detection of vertical root fractures in root filled teeth with periapical radiographs and CBCT scans.Int Endod J. 2013; 46: 1140-1152
- Cone beam computed tomography in dentomaxillofacial radiology: a two-decade overview.Dentomaxillofac Radiol. 2020; 49: 1-20
- Quantification of metal artifacts on cone beam computed tomography images.Clin Oral Implants Res. 2013; 24: 94-99
- Artefact expression associated with several cone-beam computed tomographic machines when imaging root filled teeth.Int Endod J. 2015; 48: 994-1000
- Halve the dose while maintaining image quality in paediatric cone beam CT.Sci Rep. 2019; 9: 5521
- Multimodality image registration by maximization of mutual information.IEEE Trans Med Imaging. 1997; 16: 187-198
- Effective dose range for dental cone beam computed tomography scanners.Eur J Radiol. 2012; 81: 267-271
- Dental cone beam CT: a review.Phys Med. 2015; 31: 844-860
- Cone beam CT in dental practice.Br Dent J. 2009; 207: 23-28
- Effect of root canal filling materials on dimensions of cone-beam computed tomography images.J Appl Oral Sci. 2012; 20: 260-267
- Influence of intracanal materials in vertical root fracture pathway detection with cone-beam computed tomography.J Endod. 2017; 43: 1170-1175
- Detection of horizontal root fracture with small-volume cone-beam computed tomography in the presence and absence of intracanal metallic post.J Endod. 2011; 37: 1456-1459
- Use of large-volume cone-beam computed tomography in identification and localization of horizontal root fracture in the presence and absence of intracanal metallic post.J Endod. 2012; 38: 856-859
- Motion artefacts in cone beam CT: an in vitro study about the effects on the images.Br J Radiol. 2016; 89: 1-9
- An ex vivo study of automated motion artefact correction and the impact on cone beam CT image quality and interpretability.Dentomaxillofac Radiol. 2018; 47: 1-10
- Cone-beam CT in paediatric dentistry: DIMITRA project position statement.Pediatr Radiol. 2018; 48: 308-316
- CBCT uses in clinical endodontics: the effect of CBCT on the ability to locate MB2 canals in maxillary molars.Int Endod J. 2017; 50: 1109-1115
- Detection of vertical root fractures by using cone-beam computed tomography: a clinical study.J Endod. 2011; 37: 768-772
Article info
Publication history
Published online: March 07, 2021
Identification
Copyright
© 2021 American Association of Endodontists.