Advertisement
Review Article| Volume 47, ISSUE 9, P1352-1357, September 2021

Download started.

Ok

Artificial Intelligence in Endodontics: Current Applications and Future Directions

      Abstract

      Introduction

      Artificial intelligence (AI) has the potential to replicate human intelligence to perform prediction and complex decision making in health care and has significantly increased its presence and relevance in various tasks and applications in dentistry, especially endodontics. The aim of this review was to discuss the current endodontic applications of AI and potential future directions.

      Methods

      Articles that have addressed the applications of AI in endodontics were evaluated for information pertinent to include in this narrative review.

      Results

      AI models (eg, convolutional neural networks and/or artificial neural networks) have demonstrated various applications in endodontics such as studying root canal system anatomy, detecting periapical lesions and root fractures, determining working length measurements, predicting the viability of dental pulp stem cells, and predicting the success of retreatment procedures. The future of this technology was discussed in light of helping with scheduling, treating patients, drug-drug interactions, diagnosis with prognostic values, and robotic-assisted endodontic surgery.

      Conclusions

      AI demonstrated accuracy and precision in terms of detection, determination, and disease prediction in endodontics. AI can contribute to the improvement of diagnosis and treatment that can lead to an increase in the success of endodontic treatment outcomes. However, it is still necessary to further verify the reliability, applicability, and cost-effectiveness of AI models before transferring these models into day-to-day clinical practice.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Endodontics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Amisha M.P.
        • Pathania M.
        • Rathaur V.K.
        Overview of artificial intelligence in medicine.
        J Family Med Prim Care. 2019; 8: 2328-2331
        • Shan T.
        • Tay F.R.
        • Gu L.
        Application of artificial intelligence in dentistry.
        J Dent Res. 2021; 100: 232-244
        • Murphy M.
        • Killen C.
        • Burnham R.
        • et al.
        Artificial intelligence accurately identifies total hip arthroplasty implants: a tool for revision surgery.
        Hip Int. 2021 Jan 8; ([Epub ahead of print])https://doi.org/10.1177/1120700020987526
        • Hamet P.
        • Tremblay J.
        Artificial intelligence in medicine.
        Metabolism. 2017; 69s: S36-S40
        • Huang S.
        • Yang J.
        • Fong S.
        • Zhao Q.
        Artificial intelligence in cancer diagnosis and prognosis: opportunities and challenges.
        Cancer Lett. 2020; 471: 61-71
        • Gao L.
        • Jiao T.
        • Feng Q.
        • Wang W.
        Application of artificial intelligence in diagnosis of osteoporosis using medical images: a systematic review and meta-analysis.
        Osteoporos Int. 2021; 32: 1279-1286
        • Samorani M.
        • Blount L.G.
        Machine learning and medical appointment scheduling: creating and perpetuating inequalities in access to health care.
        Am J Public Health. 2020; 110: 440-441
        • Romm E.L.
        • Tsigelny I.F.
        Artificial intelligence in drug treatment.
        Annu Rev Pharmacol Toxicol. 2020; 60: 353-369
        • Shtar G.
        • Rokach L.
        • Shapira B.
        Detecting drug-drug interactions using artificial neural networks and classic graph similarity measures.
        PLoS One. 2019; 14: e0219796
        • Bhandari M.
        • Zeffiro T.
        • Reddiboina M.
        Artificial intelligence and robotic surgery: current perspective and future directions.
        Curr Opin Urol. 2020; 30: 48-54
        • Moyle W.
        • Arnautovska U.
        • Ownsworth T.
        • Jones C.
        Potential of telepresence robots to enhance social connectedness in older adults with dementia: an integrative review of feasibility.
        Int Psychogeriatr. 2017; 29: 1951-1964
        • Barry D.T.
        Adaptation, artificial intelligence, and physical medicine and rehabilitation.
        PM R. 2018; 10: S131-S143
        • Abdi J.
        • Al-Hindawi A.
        • Ng T.
        • Vizcaychipi M.P.
        Scoping review on the use of socially assistive robot technology in elderly care.
        BMJ Open. 2018; 8: e018815
        • Langley P.
        • Laird J.E.
        Artificial intelligence and intelligent systems.
        Ann Arbor. 2006; 1001 (48109–2121)
        • Ramesh A.N.
        • Kambhampati C.
        • Monson J.R.
        • Drew P.J.
        Artificial intelligence in medicine.
        Ann R Coll Surg Engl. 2004; 86: 334-338
        • LeCun Y.
        • Bengio Y.
        • Hinton G.
        Deep learning.
        Nature. 2015; 521: 436-444
        • Hiraiwa T.
        • Ariji Y.
        • Fukuda M.
        • et al.
        A deep-learning artificial intelligence system for assessment of root morphology of the mandibular first molar on panoramic radiography.
        Dentomaxillofac Radiol. 2019; 48: 20180218
        • Schwendicke F.
        • Golla T.
        • Dreher M.
        • Krois J.
        Convolutional neural networks for dental image diagnostics: a scoping review.
        J Dent. 2019; 91: 103226
        • Nebeker C.
        • Torous J.
        • Bartlett Ellis R.J.
        Building the case for actionable ethics in digital health research supported by artificial intelligence.
        BMC Med. 2019; 17: 137
        • Schwendicke F.
        • Samek W.
        • Krois J.
        Artificial intelligence in dentistry: chances and challenges.
        J Dent Res. 2020; 99: 769-774
        • Ilhan B.
        • Lin K.
        • Guneri P.
        • Wilder-Smith P.
        Improving oral cancer outcomes with imaging and artificial intelligence.
        J Dent Res. 2020; 99: 241-248
        • Heo M.S.
        • Kim J.E.
        • Hwang J.J.
        • et al.
        Artificial intelligence in oral and maxillofacial radiology: what is currently possible?.
        Dentomaxillofac Radiol. 2021; 50: 20200375
        • Prados-Privado M.
        • García Villalón J.
        • Martínez-Martínez C.H.
        • et al.
        Dental caries diagnosis and detection using neural networks: a systematic review.
        J Clin Med. 2020; 9: 3579
        • Mahmood H.
        • Shaban M.
        • Indave B.I.
        • et al.
        Use of artificial intelligence in diagnosis of head and neck precancerous and cancerous lesions: a systematic review.
        Oral Oncol. 2020; 110: 104885
        • Grischke J.
        • Johannsmeier L.
        • Eich L.
        • et al.
        Dentronics: towards robotics and artificial intelligence in dentistry.
        Dent Mater. 2020; 36: 765-778
        • Becconsall-Ryan K.
        • Tong D.
        • Love R.M.
        Radiolucent inflammatory jaw lesions: a twenty-year analysis.
        Int Endod J. 2010; 43: 859-865
        • Setzer F.C.
        • Shi K.J.
        • Zhang Z.
        • et al.
        Artificial intelligence for the computer-aided detection of periapical lesions in cone-beam computed tomographic images.
        J Endod. 2020; 46: 987-993
        • Chapman M.N.
        • Nadgir R.N.
        • Akman A.S.
        • et al.
        Periapical lucency around the tooth: radiologic evaluation and differential diagnosis.
        Radiographics. 2013; 33: E15-E32
        • Patel S.
        • Dawood A.
        • Whaites E.
        • Pitt Ford T.
        New dimensions in endodontic imaging: part 1. Conventional and alternative radiographic systems.
        Int Endod J. 2009; 42: 447-462
        • Leonardi Dutra K.
        • Haas L.
        • Porporatti A.L.
        • et al.
        Diagnostic accuracy of cone-beam computed tomography and conventional radiography on apical periodontitis: a systematic review and meta-analysis.
        J Endod. 2016; 42: 356-364
        • Kruse C.
        • Spin-Neto R.
        • Evar Kraft D.C.
        • et al.
        Diagnostic accuracy of cone beam computed tomography used for assessment of apical periodontitis: an ex vivo histopathological study on human cadavers.
        Int Endod J. 2019; 52: 439-450
        • Endres M.G.
        • Hillen F.
        • Salloumis M.
        • et al.
        Development of a deep learning algorithm for periapical disease detection in dental radiographs.
        Diagnostics (Basel). 2020; 10: 430
        • Pauwels R.
        • Brasil D.M.
        • Yamasaki M.C.
        • et al.
        Artificial intelligence for detection of periapical lesions on intraoral radiographs: comparison between convolutional neural networks and human observers.
        Oral Surg Oral Med Oral Pathol Oral Radiol. 2021; 131: 610-616
        • Ekert T.
        • Krois J.
        • Meinhold L.
        • et al.
        Deep learning for the radiographic detection of apical lesions.
        J Endod. 2019; 45: 917-922.e5
        • Orhan K.
        • Bayrakdar I.S.
        • Ezhov M.
        • et al.
        Evaluation of artificial intelligence for detecting periapical pathosis on cone-beam computed tomography scans.
        Int Endod J. 2020; 53: 680-689
        • Poswar Fde O.
        • Farias L.C.
        • Fraga C.A.
        • et al.
        Bioinformatics, interaction network analysis, and neural networks to characterize gene expression of radicular cyst and periapical granuloma.
        J Endod. 2015; 41: 877-883
        • Zheng Z.
        • Yan H.
        • Setzer F.C.
        • et al.
        Anatomically constrained deep learning for automating dental CBCT segmentation and lesion detection.
        IEEE Trans Autom Sci Eng. 2021; 18: 603-614
        • Fuss Z.
        • Lustig J.
        • Katz A.
        • Tamse A.
        An evaluation of endodontically treated vertical root fractured teeth: impact of operative procedures.
        J Endod. 2001; 27: 46-48
        • Talwar S.
        • Utneja S.
        • Nawal R.R.
        • et al.
        Role of cone-beam computed tomography in diagnosis of vertical root fractures: a systematic review and meta-analysis.
        J Endod. 2016; 42: 12-24
        • Fukuda M.
        • Inamoto K.
        • Shibata N.
        • et al.
        Evaluation of an artificial intelligence system for detecting vertical root fracture on panoramic radiography.
        Oral Radiol. 2020; 36: 337-343
        • Johari M.
        • Esmaeili F.
        • Andalib A.
        • et al.
        Detection of vertical root fractures in intact and endodontically treated premolar teeth by designing a probabilistic neural network: an ex vivo study.
        Dentomaxillofac Radiol. 2017; 46: 20160107
        • Shah H.
        • Hernandez P.
        • Budin F.
        • et al.
        Automatic quantification framework to detect cracks in teeth.
        Proc SPIE Int Soc Opt Eng. 2018; 10578: 105781K
        • Vicory J.
        • Chandradevan R.
        • Hernandez-Cerdan P.
        • et al.
        Dental microfracture detection using wavelet features and machine learning.
        in: Isgum I. Landman B.A. Medical Imaging 2021: Image Processing. International Society for Optics and Photonics, Washington, DC2021: 115961R
        • Seidberg B.H.
        • Alibrandi B.V.
        • Fine H.
        • Logue B.
        Clinical investigation of measuring working lengths of root canals with an electronic device and with digital-tactile sense.
        J Am Dent Assoc. 1975; 90: 379-387
        • Connert T.
        • Hülber J.M.
        • Godt A.
        • et al.
        Accuracy of endodontic working length determination using cone beam computed tomography.
        Int Endod J. 2014; 47: 698-703
        • Serna-Peña G.
        • Gomes-Azevedo S.
        • Flores-Treviño J.
        • et al.
        In vivo evaluation of 3 electronic apex locators: Root ZX Mini, Apex ID, and Propex Pixi.
        J Endod. 2020; 46: 158-161
        • Saghiri M.A.
        • Asgar K.
        • Boukani K.K.
        • et al.
        A new approach for locating the minor apical foramen using an artificial neural network.
        Int Endod J. 2012; 45: 257-265
        • Petersson A.
        • Axelsson S.
        • Davidson T.
        • et al.
        Radiological diagnosis of periapical bone tissue lesions in endodontics: a systematic review.
        Int Endod J. 2012; 45: 783-801
        • Tewary S.
        • Luzzo J.
        • Hartwell G.
        Endodontic radiography: who is reading the digital radiograph?.
        J Endod. 2011; 37: 919-921
        • Saghiri M.A.
        • Garcia-Godoy F.
        • Gutmann J.L.
        • et al.
        The reliability of artificial neural network in locating minor apical foramen: a cadaver study.
        J Endod. 2012; 38: 1130-1134
        • Christodoulou A.
        • Mikrogeorgis G.
        • Vouzara T.
        • et al.
        A new methodology for the measurement of the root canal curvature and its 3D modification after instrumentation.
        Acta Odontol Scand. 2018; 76: 488-492
        • Lahoud P.
        • EzEldeen M.
        • Beznik T.
        • et al.
        Artificial intelligence for fast and accurate 3-dimensional tooth segmentation on cone-beam computed tomography.
        J Endod. 2021; 47: 827-835
        • Leite A.F.
        • Gerven A.V.
        • Willems H.
        • et al.
        Artificial intelligence-driven novel tool for tooth detection and segmentation on panoramic radiographs.
        Clin Oral Investig. 2021; 25: 2257-2267
        • Campo L.
        • Aliaga I.J.
        • De Paz J.F.
        • et al.
        Retreatment predictions in odontology by means of CBR systems.
        Comput Intell Neurosci. 2016; 2016: 7485250
        • Gu D.
        • Liang C.
        • Zhao H.
        A case-based reasoning system based on weighted heterogeneous value distance metric for breast cancer diagnosis.
        Artif Intell Med. 2017; 77: 31-47
        • Bindal P.
        • Bindal U.
        • Lin C.W.
        • et al.
        Neuro-fuzzy method for predicting the viability of stem cells treated at different time-concentration conditions.
        Technol Health Care. 2017; 25: 1041-1051
        • Bolding S.L.
        • Reebye U.N.
        Accuracy of haptic robotic guidance of dental implant surgery for completely edentulous arches.
        J Prosthet Dent. 2021 Mar 4; https://doi.org/10.1016/j.prosdent.2020.12.048