Advertisement

Current Concepts of Dentinal Hypersensitivity

      Abstract

      Introduction

      Although many clinical studies have reported on the prevalence of dental pain, far fewer studies have focused on the mechanisms of dental pain. This is an important gap because increased understanding of dental pain mechanisms may lead to improved diagnostic tests or therapeutic interventions. The aim of this study was to comprehensively review the literature on the mechanisms of dentinal sensitivity.

      Methods

      PubMed and Ovid were searched for articles that addressed dentinal pain and or pulpal sensitivity. Because of the breadth of research ranging from cellular/molecular studies to clinical trials, a narrative review on the mechanisms of dentinal sensitivity was constructed based on the literature.

      Results

      Five various mechanisms for dentinal sensitivity have been proposed: (1) the classic hydrodynamic theory, (2) direct innervation of dentinal tubules, (3) neuroplasticity and sensitization of nociceptors, (4) odontoblasts serving as sensory receptors, and (5) algoneurons.

      Conclusions

      These theories are not mutually exclusive, and it is possible that several of them contribute to dentinal sensitivity. Moreover, pulpal responses to tissue injury may alter the relative contribution of these mechanisms. For example, pulpal inflammation may lead to neuronal sprouting and peripheral sensitization. Knowledge of these mechanisms may prompt the development of therapeutic drugs that aim to disrupt these mechanisms, leading to more effective treatments for pulpal pain.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Endodontics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Byers M.R.
        Dental sensory receptors.
        Int Rev Neurobiol. 1984; 25: 39-94
        • Kawashima N.
        • Okiji T.
        Odontoblasts: specialized hard-tissue-forming cells in the dentin-pulp complex.
        Congenit Anom (Kyoto). 2016; 56: 144-153
        • Byers M.R.
        • Neuhaus S.J.
        • Gehrig J.D.
        Dental sensory receptor structure in human teeth.
        Pain. 1982; 13: 221-235
        • Story G.M.
        • Peier A.M.
        • Reeve A.J.
        • et al.
        ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures.
        Cell. 2003; 112: 819-829
        • Okumura R.
        • Shima K.
        • Muramatsu T.
        • et al.
        The odontoblast as a sensory receptor cell? The expression of TRPV1 (VR-1) channels.
        Arch Histol Cytol. 2005; 68: 251-257
        • El Karim I.A.
        • Linden G.J.
        • Curtis T.M.
        • et al.
        Human odontoblasts express functional thermo-sensitive TRP channels: implications for dentin sensitivity.
        Pain. 2011; 152: 2211-2223
        • Hossain M.Z.
        • Bakri M.M.
        • Yahya F.
        • et al.
        The role of transient receptor potential (TRP) channels in the transduction of dental pain.
        Int J Mol Sci. 2019; 20: 526
        • Brannstrom M.
        • Astrom A.
        The hydrodynamics of the dentine; its possible relationship to dentinal pain.
        Int Dent J. 1972; 22: 219-227
        • Allard B.
        • Magloire H.
        • Couble M.L.
        • et al.
        Voltage-gated sodium channels confer excitability to human odontoblasts: possible role in tooth pain transmission.
        J Biol Chem. 2006; 281: 29002-29010
        • Alloui A.
        • Zimmermann K.
        • Mamet J.
        • et al.
        TREK-1, a K+ channel involved in polymodal pain perception.
        EMBO J. 2006; 25: 2368-2376
        • Trowbridge H.O.
        Review of dental pain--histology and physiology.
        J Endod. 1986; 12: 445-452
        • Hargreaves K.M.
        • Costello A.
        Glucocorticoids suppress levels of immunoreactive bradykinin in inflamed tissue as evaluated by microdialysis probes.
        Clin Pharmacol Ther. 1990; 48: 168-178
        • Lepinski A.M.
        • Hargreaves K.M.
        • Goodis H.E.
        • Bowles W.R.
        Bradykinin levels in dental pulp by microdialysis.
        J Endod. 2000; 26: 744-747
        • Toda K.
        • Zeredo J.L.
        • Fujiyama R.
        • et al.
        Characteristics of nociceptors in the periodontium--an in vitro study in rats.
        Brain Res Bull. 2004; 62: 345-349
        • Duffin P.S.
        • Smith A.
        • Hawkins J.M.
        Nonodontogenic odontalgia referred from the temporal tendon: a case report.
        J Endod. 2020; 46: 1530-1534
        • Lavigne G.
        • Kim J.S.
        • Valiquette C.
        • Lund J.P.
        Evidence that periodontal pressoreceptors provide positive feedback to jaw closing muscles during mastication.
        J Neurophysiol. 1987; 58: 342-358
        • Byers M.R.
        • Wheeler E.F.
        • Bothwell M.
        Altered expression of NGF and P75 NGF-receptor by fibroblasts of injured teeth precedes sensory nerve sprouting.
        Growth Factors. 1992; 6: 41-52
        • Rodd H.D.
        • Boissonade F.M.
        Substance P expression in human tooth pulp in relation to caries and pain experience.
        Eur J Oral Sci. 2000; 108: 467-474
        • Steiner I.
        Herpes virus infection of the peripheral nervous system.
        Handb Clin Neurol. 2013; 115: 543-558
        • Khan A.A.
        • Owatz C.B.
        • Schindler W.G.
        • et al.
        Measurement of mechanical allodynia and local anesthetic efficacy in patients with irreversible pulpitis and acute periradicular periodontitis.
        J Endod. 2007; 33: 796-799
        • Woolf C.J.
        • Costigan M.
        Transcriptional and posttranslational plasticity and the generation of inflammatory pain.
        Proc Natl Acad Sci U S A. 1999; 96: 7723-7730
        • Scully C.
        • Eveson J.W.
        • Porter S.R.
        Munchausen’s syndrome: oral presentations.
        Br Dent J. 1995; 178: 65-67
        • Brannstrom M.
        • Linden L.A.
        • Astrom A.
        The hydrodynamics of the dental tubule and of pulp fluid. A discussion of its significance in relation to dentinal sensitivity.
        Caries Res. 1967; 1: 310-317
        • Lilja J.
        • Nordenvall K.J.
        • Branstrom M.
        Dentin sensitivity, odontoblasts and nerves under desiccated or infected experimental cavities. A clinical, light microscopic and ultrastructural investigation.
        Swed Dent J. 1982; 6: 93-103
        • Byers M.R.
        • Narhi M.V.
        Dental injury models: experimental tools for understanding neuroinflammatory interactions and polymodal nociceptor functions.
        Crit Rev Oral Biol Med. 1999; 10: 4-39
        • Brannstrom M.
        • Johnson G.
        • Nordenvall K.J.
        Transmission and control of dentinal pain: resin impregnation for the desensitization of dentin.
        J Am Dent Assoc. 1979; 99: 612-618
        • Matthews B.
        • Vongsavan N.
        Interactions between neural and hydrodynamic mechanisms in dentine and pulp.
        Arch Oral Biol. 1994; 39: 87s-95s
        • Chidchuangchai W.
        • Vongsavan N.
        • Matthews B.
        Sensory transduction mechanisms responsible for pain caused by cold stimulation of dentine in man.
        Arch Oral Biol. 2007; 52: 154-160
        • Shibukawa Y.
        • Sato M.
        • Kimura M.
        • et al.
        Odontoblasts as sensory receptors: transient receptor potential channels, pannexin-1, and ionotropic ATP receptors mediate intercellular odontoblast-neuron signal transduction.
        Pflugers Arch. 2015; 467: 843-863
        • Fried K.
        • Sessle B.J.
        • Devor M.
        The paradox of pain from tooth pulp: low-threshold "algoneurons"?.
        Pain. 2011; 152: 2685-2689
        • Widerman F.H.
        • Eames W.B.
        • Serene T.P.
        The physical and biologic properties of Cavit.
        J Am Dent Assoc. 1971; 82: 378-382
        • Narhi M.
        • Jyvasjarvi E.
        • Virtanen A.
        • et al.
        Role of intradental A- and C-type nerve fibres in dental pain mechanisms.
        Proc Finn Dent Soc. 1992; 88: 507-516
        • Narhi M.V.
        The characteristics of intradental sensory units and their responses to stimulation.
        J Dent Res. 1985; 64: 564-571
        • Ahlquist M.L.
        • Franzen O.G.
        Encoding of the subjective intensity of sharp dental pain.
        Endod Dent Traumatol. 1994; 10: 153-166
        • Narhi M.
        • Kontturi-Narhi V.
        • Hirvonen T.
        • Ngassapa D.
        Neurophysiological mechanisms of dentin hypersensitivity.
        Proc Finn Dent Soc. 1992; 88: 15-22
        • Tidmarsh B.G.
        Contents of human dentinal tubules.
        Int Endod J. 1981; 14: 191-196
        • Sessle B.J.
        The neurobiology of facial and dental pain: present knowledge, future directions.
        J Dent Res. 1987; 66: 962-981
        • Närhi M.
        • Yamamoto H.
        • Ngassapa D.
        • Hirvonen T.
        The neurophysiological basis and the role of inflammatory reactions in dentine hypersensitivity.
        Arch Oral Biol. 1994; 39: 23s-30s
        • Vongsavan N.
        • Matthews B.
        The relationship between the discharge of intradental nerves and the rate of fluid flow through dentine in the cat.
        Arch Oral Biol. 2007; 52: 640-647
        • Pashley D.H.
        Sensitivity of dentin to chemical stimuli.
        Endod Dent Traumatol. 1986; 2: 130-137
        • Narhi M.V.
        • Hirvonen T.J.
        • Hakumaki M.O.
        Responses of intradental nerve fibres to stimulation of dentine and pulp.
        Acta Physiol Scand. 1982; 115: 173-178
        • Olgart L.
        • Kerezoudis N.P.
        Nerve-pulp interactions.
        Arch Oral Biol. 1994; 39: 47s-54s
        • Park C.K.
        • Kim M.S.
        • Fang Z.
        • et al.
        Functional expression of thermo-transient receptor potential channels in dental primary afferent neurons: implication for tooth pain.
        J Biol Chem. 2006; 281: 17304-17311
        • Madison S.
        • Whitsel E.A.
        • Suarez-Roca H.
        • Maixner W.
        Sensitizing effects of leukotriene B4 on intradental primary afferents.
        Pain. 1992; 49: 99-104
        • Hong D.
        • Byers M.R.
        • Oswald R.J.
        Dexamethasone treatment reduces sensory neuropeptides and nerve sprouting reactions in injured teeth.
        Pain. 1993; 55: 171-181
        • Dib-Hajj S.D.
        • Black J.A.
        • Cummins T.R.
        • et al.
        Rescue of alpha-SNS sodium channel expression in small dorsal root ganglion neurons after axotomy by nerve growth factor in vivo.
        J Neurophysiol. 1998; 79: 2668-2676
        • Sun S.
        • Sun J.
        • Jiang W.
        • et al.
        Nav1.7 via promotion of ERK in the trigeminal ganglion plays an important role in the induction of pulpitis inflammatory pain.
        Biomed Res Int. 2019; 2019: 6973932
        • Black J.A.
        • Nikolajsen L.
        • Kroner K.
        • et al.
        Multiple sodium channel isoforms and mitogen-activated protein kinases are present in painful human neuromas.
        Ann Neurol. 2008; 64: 644-653
        • Banchs F.
        • Trope M.
        Revascularization of immature permanent teeth with apical periodontitis: new treatment protocol?.
        J Endod. 2004; 30: 196-200
        • Austah O.
        • Joon R.
        • Fath W.M.
        • et al.
        Comprehensive characterization of 2 immature teeth treated with regenerative endodontic procedures.
        J Endod. 2018; 44: 1802-1811
        • Arslan H.
        • Ahmed H.M.
        • Sahin Y.
        • et al.
        Regenerative endodontic procedures in necrotic mature teeth with periapical radiolucencies: a preliminary randomized clinical study.
        J Endod. 2019; 45: 863-872
        • Diogenes A.
        • Akopian A.N.
        • Hargreaves K.M.
        NGF up-regulates TRPA1: implications for orofacial pain.
        J Dent Res. 2007; 86: 550-555
        • Widbiller M.
        • Austah O.
        • Lindner S.R.
        • et al.
        Neurotrophic proteins in dentin and their effect on trigeminal sensory neurons.
        J Endod. 2019; 45: 729-735
        • Magloire H.
        • Maurin J.C.
        • Couble M.L.
        • et al.
        Topical review. Dental pain and odontoblasts: facts and hypotheses.
        J Orofac Pain. 2010; 24: 335-349
        • El Karim I.A.
        • Linden G.J.
        • Curtis T.M.
        • et al.
        Human dental pulp fibroblasts express the "cold-sensing" transient receptor potential channels TRPA1 and TRPM8.
        J Endod. 2011; 37: 473-478
        • Alessandri-Haber N.
        • Dina O.A.
        • Joseph E.K.
        • et al.
        A transient receptor potential vanilloid 4-dependent mechanism of hyperalgesia is engaged by concerted action of inflammatory mediators.
        J Neurosci. 2006; 26: 3864-3874
        • Peier A.M.
        • Moqrich A.
        • Hergarden A.C.
        • et al.
        A TRP channel that senses cold stimuli and menthol.
        Cell. 2002; 108: 705-715
        • El Karim I.
        • McCrudden M.T.
        • Linden G.J.
        • et al.
        TNF-alpha-induced p38MAPK activation regulates TRPA1 and TRPV4 activity in odontoblast-like cells.
        Am J Pathol. 2015; 185: 2994-3002
        • Allard B.
        • Couble M.L.
        • Magloire H.
        • Bleicher F.
        Characterization and gene expression of high conductance calcium-activated potassium channels displaying mechanosensitivity in human odontoblasts.
        J Biol Chem. 2000; 275: 25556-25561
        • Hermanstyne T.O.
        • Markowitz K.
        • Fan L.
        • Gold M.S.
        Mechanotransducers in rat pulpal afferents.
        J Dent Res. 2008; 87: 834-838
        • Binshtok A.M.
        • Bean B.P.
        • Woolf C.J.
        Inhibition of nociceptors by TRPV1-mediated entry of impermeant sodium channel blockers.
        Nature. 2007; 449: 607-610
        • Sole-Magdalena A.
        • Martinez-Alonso M.
        • Coronado C.A.
        • et al.
        Molecular basis of dental sensitivity: the odontoblasts are multisensory cells and express multifunctional ion channels.
        Ann Anat. 2018; 215: 20-29
        • Chung M.K.
        • Lee J.
        • Duraes G.
        • Ro J.Y.
        Lipopolysaccharide-induced pulpitis up-regulates TRPV1 in trigeminal ganglia.
        J Dent Res. 2011; 90: 1103-1107
        • Solé-Magdalena A.
        • Revuelta E.G.
        • Menénez-Díaz I.
        • et al.
        Human odontoblasts express transient receptor protein and acid-sensing ion channel mechanosensor proteins.
        Microsc Res Tech. 2011; 74: 457-463
        • Lee B.M.
        • Jo H.
        • Park G.
        • et al.
        Extracellular ATP induces calcium signaling in odontoblasts.
        J Dent Res. 2017; 96: 200-207
        • Egbuniwe O.
        • Grover S.
        • Duggal A.K.
        • et al.
        TRPA1 and TRPV4 activation in human odontoblasts stimulates ATP release.
        J Dent Res. 2014; 93: 911-917
        • Nishiyama A.
        • Sato M.
        • Kimura M.
        • et al.
        Intercellular signal communication among odontoblasts and trigeminal ganglion neurons via glutamate.
        Cell Calcium. 2016; 60: 341-355
        • Cho Y.S.
        • Ryu C.H.
        • Won J.H.
        • et al.
        Rat odontoblasts may use glutamate to signal dentin injury.
        Neuroscience. 2016; 335: 54-63
        • Vallbo A.B.
        • Olausson H.
        • Wessberg J.
        Unmyelinated afferents constitute a second system coding tactile stimuli of the human hairy skin.
        J Neurophysiol. 1999; 81: 2753-2763
        • Lee K.
        • Lee B.M.
        • Park C.K.
        • et al.
        Ion channels involved in tooth pain.
        Int J Mol Sci. 2019; 20: 2266
        • Fried K.
        • Arvidsson J.
        • Robertson B.
        • et al.
        Combined retrograde tracing and enzyme/immunohistochemistry of trigeminal ganglion cell bodies innervating tooth pulps in the rat.
        Neuroscience. 1989; 33: 101-109
        • Itotagawa T.
        • Yamanaka H.
        • Wakisaka S.
        • et al.
        Appearance of neuropeptide Y-like immunoreactive cells in the rat trigeminal ganglion following dental injuries.
        Arch Oral Biol. 1993; 38: 725-728