Advertisement

Association between Orthodontic Force and Dental Pulp Changes: A Systematic Review of Clinical and Radiographic Outcomes

Published:December 06, 2021DOI:https://doi.org/10.1016/j.joen.2021.11.018

      Abstract

      Introduction

      Orthodontic force triggers a sequence of biological responses that can affect dental pulp. The aim of this study was to systematically evaluate the clinical and radiographic findings of orthodontic force application on dental pulp.

      Methods

      Two reviewers comprehensively and systematically searched 6 electronic databases (Latin American and Caribbean Health Sciences [LILACS], Embase, Cochrane Library, MEDLINE/PubMed, Scopus, and Web of Science) and the gray literature (Google Scholar, OpenGrey, and ProQuest) until April 2021. According to the PICOS criteria, randomized clinical trials and observational studies that evaluated clinical or radiographic findings compatible with dental pulp changes due to orthodontic force were included. Studies in open apex or traumatized teeth, case series or reports, and laboratory-based or animal studies were excluded. The Newcastle-Ottawa Scale and Cochrane Risk of Bias 2.0 tool were used to determine the risk of bias assessment. The overall certainty level was evaluated with the Grading of Recommendations, Assessment, Development and Evaluations tool.

      Results

      Twenty-six studies were included. Among the clinical findings, orthodontic force promoted an increased pulp sensibility response and decreased pulp blood flow. Changes in pulp cavity volume and increased incidence of pulp stones were the radiographic findings observed. The studies presented a moderate risk of bias for most of the domains. The certainty of the evidence was considered very low.

      Conclusions

      Orthodontic force promoted changes in the dental pulp, generating clinical and radiographic findings. It is crucial to know these changes so that orthodontic mechanics can be safely performed. The clinician has effective noninvasive methods to assess the health and possible pulp changes during orthodontic treatment.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Endodontics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Cattaneo P.M.
        • Dalstra M.
        • Melsen B.
        Strains in periodontal ligament and alveolar bone associated with orthodontic tooth movement analyzed by finite element.
        Orthod Craniofac Res. 2009; 12: 120-128
        • Henneman S.
        • Von den Hoff J.W.
        • Maltha J.C.
        Mechanobiology of tooth movement.
        Eur J Orthod. 2008; 30: 299-306
        • Krishnan V.
        • Davidovitch Z.
        Cellular, molecular, and tissue-level reactions to orthodontic force.
        Am J Orthod Dentofacial Orthop. 2006; 129: e1-e32
        • Meikle M.C.
        The tissue, cellular, and molecular regulation of orthodontic tooth movement: 100 years after Carl Sandstedt.
        Eur J Orthod. 2006; 28: 221-240
        • Alghaithy R.A.
        • Qualtrough A.J.
        Pulp sensibility and vitality tests for diagnosing pulpal health in permanent teeth: a critical review.
        Int Endod J. 2017; 50: 135-142
        • Ghouth N.
        • Duggal M.S.
        • BaniHani A.
        • Nazzal H.
        The diagnostic accuracy of laser Doppler flowmetry in assessing pulp blood flow in permanent teeth: a systematic review.
        Dent Traumatol. 2018; 34: 311-319
        • Inoue T.
        • Shimono M.
        Repair dentinogenesis following transplantation into normal and germ-free animals.
        Proc Finn Dent Soc. 1992; 88: 183-194
        • Patel S.
        • Ricucci D.
        • Durak C.
        • Tay F.
        Internal root resorption: a review.
        J Endod. 2010; 36: 1107-1121
        • Brodin P.
        • Linge L.
        • Aars H.
        Instant assessment of pulpal blood flow after orthodontic force application.
        J Orofac Orthop. 1996; 57: 306-309
        • Ikawa M.
        • Fujiwara M.
        • Horiuchi H.
        • Shimauchi H.
        The effect of short-term tooth intrusion on human pulpal blood flow measured by laser Doppler flowmetry.
        Arch Oral Biol. 2001; 46: 781-787
        • McDonald F.
        • Pitt Ford T.R.
        Blood flow changes in permanent maxillary canines during retraction.
        Eur J Orthod. 1994; 16: 1-9
        • Sabuncuoglu F.A.
        • Ersahan S.
        Changes in maxillary incisor dental pulp blood flow during intrusion by mini-implants.
        Acta Odontol Scand. 2014; 72: 489-496
        • Weissheimer T.
        • Silva E.
        • Pinto K.P.
        • et al.
        Do orthodontic tooth movements induce pulp necrosis? A systematic review.
        Int Endod J. 2021; 54: 1246-1262
        • Vitali F.C.
        • Cardoso I.V.
        • Mello F.W.
        • et al.
        Effect of orthodontic force on dental pulp histomorphology and tissue factor expression: a systematic review.
        Angle Orthod. 2021; 91: 830-842
        • Moher D.
        • Shamseer L.
        • Clarke M.
        • et al.
        Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement.
        Syst Rev. 2015; 4: 1
        • Shamseer L.
        • Moher D.
        • Clarke M.
        • et al.
        Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation.
        BMJ. 2015; 350: g7647
        • Stang A.
        Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses.
        Eur J Epidemiol. 2010; 25: 603-605
        • Lo C.K.
        • Mertz D.
        • Loeb M.
        Newcastle-Ottawa Scale: comparing reviewers' to authors' assessments.
        BMC Med Res Methodol. 2014; 14: 45
        • Sterne J.A.
        • Savović J.
        • Page M.J.
        • et al.
        RoB 2: a revised tool for assessing risk of bias in randomised trials.
        BMJ. 2019; 366: l4898
        • Han G.
        • Hu M.
        • Zhang Y.
        • Jiang H.
        Pulp vitality and histologic changes in human dental pulp after the application of moderate and severe intrusive orthodontic forces.
        Am J Orthod Dentofacial Orthop. 2013; 144: 518-522
        • Veberiene R.
        • Smailiene D.
        • Baseviciene N.
        • et al.
        Change in dental pulp parameters in response to different modes of orthodontic force application.
        Angle Orthod. 2010; 80: 1018-1022
        • Veberiene R.
        • Smailiene D.
        • Danielyte J.
        • et al.
        Effects of intrusive force on selected determinants of pulp vitality.
        Angle Orthod. 2009; 79: 1114-1118
        • Ferreira L.
        • Macluf Filho E.
        • Rodrigues C.L.
        • et al.
        Lack of pulp sensitivity in maxillary canines submitted to orthodontic traction: a retrospective clinical study.
        RSBO. 2013; 10: 29-33
        • Alomari F.A.
        • Al-Habahbeh R.
        • Alsakarna B.K.
        Responses of pulp sensibility tests during orthodontic treatment and retention.
        Int Endod J. 2011; 44: 635-643
        • Cave S.G.
        • Freer T.J.
        • Podlich H.M.
        Pulp-test responses in orthodontic patients.
        Aust Orthod J. 2002; 18: 27-34
        • Hall C.J.
        • Freer T.J.
        The effects of early orthodontic force application on pulp test responses.
        Aust Orthod J. 1998; 43: 359-361
        • Khoshbin E.
        • Soheilifar S.
        • Donyavi Z.
        • Shahsavand N.
        Evaluation of sensibility threshold of dental pulp to electric pulp test (EPT) in the teeth under fixed orthodontic treatment with 0.014 and 0.012 initial NiTi archwire.
        J Clin Diagn Res. 2019; 13: ZC16-ZC19
        • Leavitt A.H.
        • King G.J.
        • Ramsay D.S.
        • Jackson D.L.
        A longitudinal evaluation of pulpal pain during orthodontic tooth movement.
        Orthod Craniofac Res. 2002; 5: 29-37
        • Monardes Cortés H.
        • Zúñiga Caballero A.
        • Bravo Muñoz C.
        • et al.
        Reacción pulpar frente a fuerzas ortodónticas: evaluación de la primera semana de tratamiento.
        Av Odontoestomatol. 2018; 34: 237-244
        • Cho J.J.
        • Efstratiadis S.
        • Hasselgren G.
        Pulp vitality after rapid palatal expansion.
        Am J Orthod Dentofacial Orthop. 2010; 137: 254-258
        • Barwick P.J.
        • Ramsay D.S.
        Effect of brief intrusive force on human pulpal blood flow.
        Am J Orthod Dentofacial Orthop. 1996; 110: 273-279
        • Sabuncuoglu F.A.
        • Ersahan S.
        Changes in maxillary molar pulp blood flow during orthodontic intrusion.
        Aust Orthod J. 2014; 30: 152-160
        • Sano Y.
        • Ikawa M.
        • Sugawara J.
        • et al.
        The effect of continuous intrusive force on human pulpal blood flow.
        Eur J Orthod. 2002; 24: 159-166
        • Ertas E.T.
        • Veli I.
        • Akin M.
        • et al.
        Dental pulp stone formation during orthodontic treatment: a retrospective clinical follow-up study.
        Niger J Clin Pract. 2017; 20: 37-42
        • Jena D.
        • Balakrishna K.
        • Singh S.
        • et al.
        A retrospective analysis of pulp stones in patients following orthodontic treatment.
        J Contemp Dent Pract. 2018; 19: 1095-1099
        • Korkmaz Y.N.
        • Aydin Z.U.
        • Sarioglu B.
        Orthodontic treatment and pulp stone formation: is there a relationship?.
        Clin Exp Health Sci. 2019; 9: 340-344
        • Popp T.W.
        • Artun J.
        • Linge L.
        Pulpal response to orthodontic tooth movement in adolescents: a radiographic study.
        Am J Orthod Dentofacial Orthop. 1992; 101: 228-233
        • Delivanis H.P.
        • Sauer G.J.
        Incidence of canal calcification in the orthodontic patient.
        Am J Orthod Dentofacial Orthop. 1982; 82: 58-61
        • Abdel-Kader H.M.
        • Ammar A.S.
        Maxillary canine internal root resorption concomitant to orthodontic retraction: cone beam evaluation.
        Biomed J. 2018; 2: 6
        • Baratieri C.
        • Alves Jr., M.
        • Mattos C.T.
        • et al.
        Changes of pulp-chamber dimensions 1 year after rapid maxillary expansion.
        Am J Orthod Dentofacial Orthop. 2013; 143: 471-478
        • Venkatesh S.
        • Ajmera S.
        • Ganeshkar S.V.
        Volumetric pulp changes after orthodontic treatment determined by cone-beam computed tomography.
        J Endod. 2014; 40: 1758-1763
        • Chmura Kraemer H.
        • Periyakoil V.S.
        • Noda A.
        Kappa coefficients in medical research.
        Stat Med. 2002; 21: 2109-2129
        • Schünemann H.B.
        • Guyatt G.
        • Oxman A.
        GRADE handbook for grading quality of evidence and strength of recommendations.
        The GRADE Working Group, 2013
        • Mainkar A.
        • Kim S.G.
        Diagnostic accuracy of 5 dental pulp tests: a systematic review and meta-analysis.
        J Endod. 2018; 44: 694-702
        • Bender I.B.
        • Landau M.A.
        • Fonsecca S.
        • Trowbridge H.O.
        The optimum placement-site of the electrode in electric pulp testing of the 12 anterior teeth.
        J Am Dent Assoc. 1989; 118: 305-310
        • Brignardello-Petersen R.
        Laser Doppler flowmetry and pulse oximetry seem to have high accuracy in detecting vital and nonvital teeth and perform better than cold, heat, and electric pulp testing.
        J Am Dent Assoc. 2018; 149: e152
        • Morse D.R.
        Age-related changes of the dental pulp complex and their relationship to systemic aging.
        Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1991; 72: 721-745
        • Ponce E.H.
        • Vilar Fernández J.A.
        The cemento-dentino-canal junction, the apical foramen, and the apical constriction: evaluation by optical microscopy.
        J Endod. 2003; 29: 214-219
        • Marroquín B.B.
        • El-Sayed M.A.
        • Willershausen-Zönnchen B.
        Morphology of the physiological foramen: I. Maxillary and mandibular molars.
        J Endod. 2004; 30: 321-328
        • Ricucci D.
        • Loghin S.
        • Siqueira Jr., J.F.
        Correlation between clinical and histologic pulp diagnoses.
        J Endod. 2014; 40: 1932-1939
        • Sener S.
        • Cobankara F.K.
        • Akgünlü F.
        Calcifications of the pulp chamber: prevalence and implicated factors.
        Clin Oral Investig. 2009; 13: 209-215
        • da Silva E.
        • Prado M.C.
        • Queiroz P.M.
        • et al.
        Assessing pulp stones by cone-beam computed tomography.
        Clin Oral Investig. 2017; 21: 2327-2333
        • Ioannidis J.P.
        • Patsopoulos N.A.
        • Rothstein H.R.
        Reasons or excuses for avoiding meta-analysis in forest plots.
        BMJ. 2008; 336: 1413-1415