Advertisement

Absence of Tumor Necrosis Factor Receptor 1 Inhibits Osteoclast Activity in Apical Dental Resorption Caused by Endodontic Infection in Mice

Published:August 11, 2022DOI:https://doi.org/10.1016/j.joen.2022.08.003

      Abstract

      Introduction

      The aim of this study was to evaluate osteoclastogenesis and dental resorption resulting from endodontic infection in wild-type (WT) and tumor necrosis factor receptor 1 genetically deficient (TNFR1 KO) mice.

      Methods

      After approval by the ethics committee on the use of animals, 40 mice were distributed into 2 experimental groups based on time periods: 14 days (n = 10 WT mice and n = 10 TNFR1 KO mice) and 42 days (n = 10 WT mice and n = 10 TNFR1 KO mice). After these periods, morphometric analysis was performed using bright field and fluorescence microscopy and tartrate-resistant acid phosphatase histoenzymology to identify osteoclasts. One-way analysis of variance followed by the Tukey post hoc test was used for the statistical analysis (α = 0.05).

      Results

      WT mice in the 42-day period had a greater apical dental resorption in the distal root of the first molar than TNFR1 KO mice (P < .05). On the other hand, TNFR1 KO mice showed a smaller number of osteoclasts on the dental surface than WT mice (P < .05).

      Conclusions

      WT mice with apical periodontitis had more extensive apical dental resorptions and a larger number of osteoclasts on the tooth surface than TNFR1 KO mice.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Endodontics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Nair P.N.
        Pathogenesis of apical periodontitis and the causes of endodontic failures.
        Crit Rev Oral Biol Med. 2004; 15: 348-381
        • Graves D.T.
        • Oates T.
        • Garlet G.P.
        Review of osteoimmunology and the host response in endodontic and periodontal lesions.
        J Oral Microbiol. 2011 Jan 17; ([Epub ahead of print])https://doi.org/10.3402/jom.v3i0.5304
        • De Rossi A.
        • Fukada S.Y.
        • De Rossi M.
        • et al.
        Cementocytes express receptor activator of the nuclear factor kappa-B ligand in response to endodontic infection in mice.
        J Endod. 2016; 42: 1251-1257
        • Stashenko P.
        • Yu S.M.
        • Wang C.Y.
        Kinetics of immune cell and bone resorptive responses to endodontic infections.
        J Endod. 1992; 18: 422-426
        • Márton I.J.
        • Kiss C.
        Overlapping protective and destructive regulatory pathways in apical periodontitis.
        J Endod. 2014; 40: 155-163
        • Herrera H.
        • Herrera H.
        • Leonardo M.R.
        • et al.
        Treatment of external inflammatory root resorption after autogenous tooth transplantation: case report.
        Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006; 102: e51-e54
        • Paula-Silva F.W.
        • Ghosh A.
        • Arzate H.
        • et al.
        Calcium hydroxide promotes cementogenesis and induces cementoblastic differentiation of mesenchymal periodontal ligament cells in a CEMP1- and ERK-dependent manner.
        Calcif Tissue Int. 2010; 87: 144-157
        • Sakko M.
        • Tjäderhane L.
        • Rautemaa-Richardson R.
        Microbiology of root canal infections.
        Prim Dent J. 2016; 5: 84-89
        • Shah A.
        • Lee D.
        • Song M.
        • et al.
        Clastic cells are absent around the root surface in pulp-exposed periapical periodontitis lesions in mice.
        Oral Dis. 2018; 24: 57-62
        • Goldman E.
        • Reich E.
        • Abramovitz I.
        • Klutstein M.
        Inducing apical periodontitis in mice.
        J Vis Exp. 2019 Aug 6; ([Epub ahead of print])https://doi.org/10.3791/59521
        • Graves D.T.
        • Cochran D.
        The contribution of interleukin-1 and tumor necrosis factor to periodontal tissue destruction.
        J Periodontol. 2003; 74: 391-401
        • Paula-Silva F.W.
        • Ghosh A.
        • Silva L.A.
        • Kapila Y.L.
        TNF-alpha promotes an odontoblastic phenotype in dental pulp cells.
        J Dent Res. 2009; 88: 339-344
        • Hirsch V.
        • Wolgin M.
        • Mitronin A.V.
        • Kielbassa A.M.
        Inflammatory cytokines in normal and irreversibly inflamed pulps: a systematic review.
        Arch Oral Biol. 2017; 82: 38-46
        • Nikolic N.
        • Jakovljevic A.
        • Carkic J.
        • et al.
        Notch signaling pathway in apical periodontitis: correlation with bone resorption regulators and proinflammatory cytokines.
        J Endod. 2019; 45: 123-128
        • Wajant H.
        • Pfizenmaier K.
        • Scheurich P.
        Tumor necrosis factor signaling.
        Cell Death Differ. 2003; 10: 45-65
        • Hussain Mian A.
        • Saito H.
        • Alles N.
        • et al.
        Lipopolysaccharide-induced bone resorption is increased in TNF type 2 receptor-deficient mice in vivo.
        J Bone Miner Metab. 2008; 26: 469-477
        • Algate K.
        • Haynes D.R.
        • Bartold P.M.
        • et al.
        The effects of tumour necrosis factor-α on bone cells involved in periodontal alveolar bone loss; osteoclasts, osteoblasts and osteocytes.
        J Periodontal Res. 2016; 51: 549-566
        • Yang S.
        • Wang J.
        • Brand D.D.
        • Zheng S.G.
        Role of TNF-TNF receptor 2 signal in regulatory T cells and its therapeutic implications.
        Front Immunol. 2018; 9: 784
        • Zhang N.
        • Wang Z.
        • Zhao Y.
        Selective inhibition of tumor necrosis factor receptor-1 (TNFR1) for the treatment of autoimmune diseases.
        Cytokine Growth Factor Rev. 2020; 55: 80-85
        • Abu-Amer Y.
        • Ross F.P.
        • Edwards J.
        • Teitelbaum S.L.
        Lipopolysaccharide-stimulated osteoclastogenesis is mediated by tumor necrosis factor via its P55 receptor.
        J Clin Invest. 1997; 100: 1557-1565
        • Nagano K.
        • Alles N.
        • Mian A.H.
        • et al.
        The tumor necrosis factor type 2 receptor plays a protective role in tumor necrosis factor-α-induced bone resorption lacunae on mouse calvariae.
        J Bone Miner Metab. 2011; 29: 671-681
        • Volejnikova S.
        • Marks Jr., S.C.
        • Graves D.T.
        Tumor necrosis factor modulates apoptosis of monocytes in areas of developmentally regulated bone remodeling.
        J Bone Miner Res. 2002; 17: 991-997
        • Yoshimatsu M.
        • Shibata Y.
        • Kitaura H.
        • et al.
        Experimental model of tooth movement by orthodontic force in mice and its application to tumor necrosis factor receptor-deficient mice.
        J Bone Miner Metab. 2006; 24: 20-27
        • Ogawa S.
        • Kitaura H.
        • Kishikawa A.
        • et al.
        TNF-α is responsible for the contribution of stromal cells to osteoclast and odontoclast formation during orthodontic tooth movement.
        PLoS One. 2019; 14: e0223989
        • Percie du Sert N.
        • Hurst V.
        • Ahluwalia A.
        • et al.
        The ARRIVE guidelines 2.0: updated guidelines for reporting animal research.
        PLoS Biol. 2020; 18: e3000410
        • De Rossi A.
        • Huamán S.D.
        • León J.E.
        • et al.
        Fibroblast growth factor receptor 2 expression in apical periodontitis in mice.
        Int Endod J. 2020; 53: 1111-1119
        • Cintra L.T.
        • Samuel R.O.
        • Facundo A.C.
        • et al.
        Relationships between oral infections and blood glucose concentrations or HbA1c levels in normal and diabetic rats.
        Int Endod J. 2014; 47: 228-237
        • Bezerra da Silva R.A.
        • Nelson-Filho P.
        • Lucisano M.P.
        • et al.
        MyD88 knockout mice develop initial enlarged periapical lesions with increased numbers of neutrophils.
        Int Endod J. 2014; 47: 675-686
        • Paula-Silva F.W.
        • Petean I.B.
        • da Silva L.A.
        • Faccioli L.H.
        Dual role of 5-lipoxygenase in osteoclastogenesis in bacterial-induced apical periodontitis.
        J Endod. 2016; 42: 447-454
        • Paula-Silva F.W.
        • Arnez M.F.
        • Petean I.B.
        • et al.
        Effects of 5-lipoxygenase gene disruption on inflammation, osteoclastogenesis and bone resorption in polymicrobial apical periodontitis.
        Arch Oral Biol. 2020; 112: 104670
        • De Rossi A.
        • De Rossi M.
        • Rocha L.B.
        • et al.
        Morphometric analysis of experimentally induced periapical lesions: radiographic vs histopathological findings.
        Dentomaxillofac Radiol. 2007; 36: 211-217
        • Cohenca N.
        • Romualdo P.C.
        • da Silva L.A.
        • et al.
        Tissue response to root canal irrigation systems in dogs' teeth with apical periodontitis.
        Clin Oral Investig. 2015; 19: 1147-1156
        • Carswell E.A.
        • Old L.J.
        • Kassel R.L.
        • et al.
        An endotoxin-induced serum factor that causes necrosis of tumors.
        Proc Natl Acad Sci U S A. 1975; 72: 3666-3670
        • Ruiz A.
        • Palacios Y.
        • Garcia I.
        • Chavez-Galan L.
        Transmembrane TNF and its receptors TNFR1 and TNFR2 in mycobacterial infections.
        Int J Mol Sci. 2021; 22: 5461
        • Dostert C.
        • Grusdat M.
        • Letellier E.
        • Brenner D.
        The TNF family of ligands and receptors: communication modules in the immune system and beyond.
        Physiol Rev. 2019; 99: 115-160
        • Idress M.
        • Milne B.F.
        • Thompson G.S.
        • et al.
        Structure-based design, synthesis and bioactivity of a new anti-TNFα cyclopeptide.
        Molecules. 2020; 25: 922
        • Chen X.
        • Bäumel M.
        • Männel D.N.
        • et al.
        Interaction of TNF with TNF receptor type 2 promotes expansion and function of mouse CD4+CD25+ T regulatory cells.
        J Immunol. 2007; 179: 154-161
        • Ponzetti M.
        • Rucci N.
        Updates on osteoimmunology: what's new on the cross-talk between bone and immune system.
        Front Endocrinol (Lausanne). 2019; 10: 236