Advertisement

The Effect of Octenidine on Proliferation, Migration, and Osteogenic Differentiation of Human Dental Pulp and Apical Papilla Stem Cells

Published:October 12, 2022DOI:https://doi.org/10.1016/j.joen.2022.09.010

      Abstract

      Introduction

      The research for alternative irrigating solutions is ongoing, since no “ideal” solution has yet been found. Octenidine dihydrochloride (OCT) has been indicated as an endodontic irrigant because it has adequate antimicrobial and biological properties. The present study aimed to assess the effects of OCT on proliferation, migration, and induction of the osteogenic phenotype of stem cells from human dental pulp and apical papilla.

      Methods

      Cells were collected from human third molars and exposed to different doses of OCT, chlorhexidine (CHX), sodium hypochlorite (NaOCl), and ethylenediaminetetraacetic acid (EDTA) to determine cell viability by alamarBlue assay; proliferation by bromodeoxyuridine incorporation; migration by the Transwell assay; alkaline phosphatase activity by thymolphthalein release; and production of mineralized nodules by alizarin red staining. The results were analyzed by 1- or 2-way analysis of variance and Tukey (α = .05).

      Results

      CHX promoted lower cell viability, followed by OCT, NaOCl, and EDTA, especially at intermediate doses (P < .05). Cells exposed to CHX had less proliferation than the other groups (P < .05). The Transwell assay revealed no differences among OCT, EDTA, and culture medium (control group) (P > .05). OCT and EDTA induced greater migration than CHX and NaOCl (P < .05). OCT and EDTA induced higher alkaline phosphatase activity than NaOCl and CHX (P < .05). No difference was detected among the groups using alizarin red staining (P > .05).

      Conclusions

      OCT induced high migration, proliferation, and alkaline phosphatase activity of stem cells from human dental pulp and apical papilla, which could be advantageous for regenerative endodontic procedures.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Endodontics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • del Carpio-Perochena A.
        • Bramante C.M.
        • de Andrade F.B.
        • et al.
        Antibacterial and dissolution ability of sodium hypochlorite in different pHs on multi-species biofilms.
        Clin Oral Investig. 2015; 19: 2067-2073
        • Martin D.E.
        • De Almeida J.F.A.
        • Henry M.A.
        • et al.
        Concentration-dependent effect of sodium hypochlorite on stem cells of apical papilla survival and differentiation.
        J Endod. 2014; 40: 51-55
        • Kontakiotis E.G.
        • Filippatos C.G.
        • Tzanetakis G.N.
        • et al.
        Regenerative endodontic therapy: a data analysis of clinical protocols.
        J Endod. 2015; 41: 146-154
        • Okino L.A.
        • Siqueira E.L.
        • Santos M.
        • et al.
        Dissolution of pulp tissue by aqueous solution of chlorhexidine digluconate and chlorhexidine digluconate gel.
        Int Endod J. 2004; 37: 38-41
        • Widbiller M.
        • Althumairy R.I.
        • Diogenes A.
        Direct and indirect effect of chlorhexidine on survival of stem cells from the apical papilla and its neutralization.
        J Endod. 2019; 45: 156-160
        • Matiasek J.
        • Kienzl P.
        • Otti G.R.
        • et al.
        Aseptic surgical preparation for upper eyelid blepharoplasty via full-face octenidine antiseptic without antibiotic medication shows effective prophylaxis against post-surgical wound infection.
        Int Wound J. 2018; 15: 84-89
        • Guneser M.B.
        • Akbulut M.B.
        • Eldeniz A.U.
        Antibacterial effect of chlorhexidine-cetrimide combination, Salvia officinalis plant extract and octenidine in comparison with conventional endodontic irrigants.
        Dent Mater J. 2016; 35: 736-741
        • Eldeniz A.U.
        • Guneser M.B.
        • Akbulut M.B.
        Comparative antifungal efficacy of light-activated disinfection and octenidine hydrochloride with contemporary endodontic irrigants.
        Lasers Med Sci. 2015; 30: 669-675
        • Tirali R.E.
        • Bodur H.
        • Sipahi B.
        • et al.
        Evaluation of the antimicrobial activities of chlorhexidine gluconate, sodium hypochlorite and octenidine hydrochloride in vitro.
        Aust Endod J. 2013; 39: 15-18
        • Reddy N.B.N.
        • Sridhar D.
        • Rajkumar A.
        • et al.
        Comparative evaluation of antifungal activity of octenidine: an in vitro confocal laser study.
        J Contemp Dent Pract. 2020; 21: 905-909
        • Bukhary S.
        • Balto H.
        Antibacterial efficacy of octenisept, alexidine, chlorhexidine, and sodium hypochlorite against Enterococcus faecalis biofilms.
        J Endod. 2017; 43: 643-647
        • Coaguila-Llerena H.
        • Rodrigues E.M.
        • Tanomaru-Filho M.
        • et al.
        Effects of calcium hypochlorite and octenidine hydrochloride on L929 and human periodontal ligament cells.
        Braz Dent J. 2019; 30: 213-219
        • Coaguila-Llerena H.
        • Rodrigues E.M.
        • Santos C.S.
        • et al.
        Effects of octenidine applied alone or mixed with sodium hypochlorite on eukaryotic cells.
        Int Endod J. 2020; 53: 1264-1274
        • Huang G.T.J.
        • Yamaza T.
        • Shea L.D.
        • et al.
        Stem/Progenitor cell-mediated de novo regeneration of dental pulp with newly deposited continuous layer of dentin in an in vivo model.
        Tissue Eng Part A. 2010; 16: 605-615
        • Hargreaves K.M.
        • Diogenes A.
        • Teixeira F.B.
        Treatment Options: Biological Basis of Regenerative Endodontic Procedures.
        J Endod. 2013; 39: S30-S43
        • Peters O.A.
        Research that matters - biocompatibility and cytotoxicity screening.
        Int Endod J. 2013; 46: 195-197
        • Huang G.T.-J.
        • Gronthos S.
        • Shi S.
        Mesenchymal stem cells derived from dental tissues vs . Those from other sources: their biology and role in regenerative medicine.
        J Dent Res. 2009; 88: 792-806
        • Leguizamón N.D.P.
        • Rodrigues E.M.
        • de Campos M.L.
        • et al.
        In vivo and in vitro anti-inflammatory and pro-osteogenic effects of citrus cystatin CsinCPI-2.
        Cytokine. 2019; 123: 154760
        • Liu L.
        • Leng S.
        • Yue J.
        • et al.
        EDTA enhances stromal cell–derived Factor 1α–induced migration of dental pulp cells by up-regulating chemokine receptor 4 expression.
        J Endod. 2019; 45: 599-605.e1
        • Scott M.B.
        • Zilinski G.S.
        • Kirkpatrick T.C.
        • et al.
        The effects of irrigants on the survival of human stem cells of the apical papilla, including Endocyn.
        J Endod. 2018; 44: 263-268
        • Lovelace T.W.
        • Henry M.A.
        • Hargreaves K.M.
        • et al.
        Evaluation of the delivery of mesenchymal stem cells into the root canal space of necrotic immature teeth after clinical regenerative endodontic procedure.
        J Endod. 2011; 37: 133-138
        • Coaguila-Llerena H.
        • Denegri-Hacking A.
        • Lucano-Tinoco L.
        • et al.
        Accidental extrusion of sodium hypochlorite in a patient taking alendronate: a case report with an 8-year follow-up.
        J Endod. 2021; 47: 1947-1952
        • Vouzara T.
        • Koulaouzidou E.
        • Ziouti F.
        • et al.
        Combined and independent cytotoxicity of sodium hypochlorite, ethylenediaminetetraacetic acid and chlorhexidine.
        Int Endod J. 2016; 49: 764-773
        • Gomes-Filho J.E.
        • Aurélio K.G.
        • Costa M.M.T.D.M.
        • et al.
        Comparison of the biocompatibility of different root canal irrigants.
        J Appl Oral Sci. 2008; 16: 137-144
        • Viola K.S.
        • Rodrigues E.M.
        • Tanomaru-Filho M.
        • et al.
        Cytotoxicity of peracetic acid: evaluation of effects on metabolism, structure and cell death.
        Int Endod J. 2018; 51: e264-e277
      1. Cell proliferation Elisa BrdU. Roche Applied Science, Mannheim, Germany2013
        • Reis MV. de P.
        • Moura C.C.G.
        • Silva MV da
        • et al.
        Effect of lectin (ScLL) on fibroblasts stimulated with LPS - an in vitro study.
        Braz Oral Res. 2016; 30: e140
        • Adan A.
        • Kiraz Y.
        • Baran Y.
        Cell proliferation and cytotoxicity assays.
        Curr Pharm Biotechnol. 2016; 17: 1213-1221
        • Hidalgo E.
        • Dominguez C.
        Mechanisms underlying chlorhexidine-induced cytotoxicity.
        Toxicol Vitr. 2001; 15: 271-276
        • Hidalgo E.
        • Bartolome R.
        • Dominguez C.
        Cytotoxicity mechanisms of sodium hypochlorite in cultured human dermal fibroblasts and its bactericidal effectiveness.
        Chem Biol Interact. 2002; 139: 265-282
        • Kucukkaya Eren S.
        • Bahador Zırh E.
        • Zeybek N.D.
        • et al.
        Effect of benzalkonium chloride addition to EDTA on attachment and proliferation of dental pulp stem cells on dentin and on transforming growth factor-β1 release.
        Odontology. 2021; 109: 313-320
        • Trepat X.
        • Chen Z.
        • Jacobson K.
        Cell Migration.
        Compr Physiol. 2012; 2: 2369-2392
        • Eramo S.
        • Natali A.
        • Pinna R.
        • et al.
        Dental pulp regeneration via cell homing.
        Int Endod J. 2018; 51: 405-419
        • Kramer N.
        • Walzl A.
        • Unger C.
        • et al.
        In vitro cell migration and invasion assays.
        Mutat Res. 2013; 752: 10-24
        • Deniz Sungur D.
        • Aksel H.
        • Ozturk S.
        • et al.
        Effect of dentine conditioning with phytic acid or etidronic acid on growth factor release, dental pulp stem cell migration and viability.
        Int Endod J. 2019; 52: 838-846
        • Chai J.
        • Jin R.
        • Yuan G.
        • et al.
        Effect of liquid platelet-rich fibrin and platelet-rich plasma on the regenerative potential of dental pulp cells cultured under inflammatory conditions: a comparative analysis.
        J Endod. 2019; 45: 1000-1008
        • Mercan U.
        • Gonen Z.B.
        • Salkin H.
        • et al.
        Comparison of the effect of postoperative care agents on human gingival fibroblasts: a preliminary study.
        Eur Oral Res. 2019; 53: 67-73
        • Liu J.X.
        • Werner J.
        • Kirsch T.
        • et al.
        Cytotoxicity evaluation of chlorhexidine gluconate on human fibroblasts, myoblasts, and osteoblasts.
        J Bone Jt Infect. 2018; 3: 165-172
        • Vimalraj S.
        Alkaline phosphatase: structure, expression and its function in bone mineralization.
        Gene. 2020; 754: 144855
        • Gregory C.A.
        • Gunn W.G.
        • Peister A.
        • et al.
        An alizarin red-based assay of mineralization by adherent cells in culture: comparison with cetylpyridinium chloride extraction.
        Anal Biochem. 2004; 329: 77-84
        • Daood U.
        • Bapat R.A.
        • Sidhu P.
        • et al.
        Antibacterial and antibiofilm efficacy of k21-E in root canal disinfection.
        Dent Mater. 2021; 37: 1511-1528
        • Hartung T.
        • Daston G.
        Are in vitro tests suitable for regulatory use?.
        Toxicol Sci. 2009; 111: 233-237