Advertisement

Determination of the Severity of Pulpitis by Immunohistological Analysis and Comparison with the Clinical Picture

Published:November 07, 2022DOI:https://doi.org/10.1016/j.joen.2022.10.012

      Abstract

      Introduction

      Inflammation of the dental pulp due to caries is a highly prevalent pathology which causes intense pain. Here, we sought to correlate the clinical picture with the histopathology of the affected tissue. The interaction between nociceptive neurons and immune cells is fundamental to regulate the inflammatory response, but little is known about the glial network involved in this process, and its impact on caries pathogenesis.

      Methods

      This study characterized Schwann cells and other neuroimmune components in human dental pulps with reversible and symptomatic irreversible pulpitis (IP). Twenty eight human teeth were extracted for reasons beyond the scope of this study. Twelve were diagnosed as reversible and symptomatic IP respectively, and 4 as controls. The teeth were decalcified, processed for immunolabeling and analyzed with confocal microscopy.

      Results

      Symptomatic IP was characterized by a significantly higher density of neutrophils, and the release of neutrophil extracellular traps. Between IP and healthy controls, there were significant differences in the density of Schwann cells, macrophages, and neutrophils, in addition to morphological alterations. In IP, Schwann cell arborization extended toward the pulpodentinal interface along with more spindle-shaped cell bodies, while some macrophages displayed a distinct fusiform phenotype.

      Conclusions

      The dental pulp has a complex multicellular organization and its pulpodentinal interface acts as a barrier in which Schwann and immune cells are distributed strategically to stop the progress of pathogens. A synergistic interaction of Schwann cells with immune cells creates a novel perspective to better understand the role of these glial cells and their active participation in pulpal inflammation.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Endodontics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Allareddy V.
        • Rampa S.
        • Lee M.
        • et al.
        Hospital-based emergency department visits involving dental conditions: profile and predictors of poor outcomes and resource utilization.
        J Am Dent Assoc. 2014; 145: 331-337
        • Bjørndal L.
        • Simon S.
        • Tomson P.L.
        • et al.
        Management of deep caries and the exposed pulp.
        Int Endod J. 2019; 52: 949-973
        • Mejàre I.A.
        • Axelsson S.
        • Davidson T.
        • et al.
        Diagnosis of the condition of the dental pulp: a systematic review.
        Int Endod J. 2012; 45: 597-613
        • Duncan H.F.
        • Galler K.M.
        • Tomson P.L.
        • et al.
        European society of endodontology position statement: management of deep caries and the exposed pulp.
        Int Endod J. 2019; 52: 923-934
        • Couve E.
        • Schmachtenberg O.
        Schwann cell responses and plasticity in different dental pulp scenarios.
        Front Cell Neurosci. 2018; 12: 1-8
        • França C.
        • Riggers R.
        • Muschler J.
        • et al.
        3D-Imaging of Whole Neuronal and Vascular Networks of the human dental pulp via CLARITY and light sheet microscopy.
        Sci Rep. 2019; 9: 1-10
        • Pinho-Ribeiro F.
        • Verri W.
        • Chiu I.
        Nociceptor sensory neuron–immune interactions in pain and inflammation.
        Trends Immunol. 2017; 38: 5-19
        • Byers M.
        • Suzuki H.
        • Maeda T.
        Dental neuroplasticity, neuro-pulpal interactions, and nerve regeneration.
        Microsc Res Tech. 2003; 60: 503-515
        • Fristad I.
        • Bletsa A.
        • Byers M.
        Inflammatory nerve responses in the dental pulp.
        Endod Top. 2010; 17: 12-41
        • Caviedes-Bucheli J.
        • Muñoz H.
        • Azuero-Holguín M.
        • et al.
        Neuropeptides in sental pulp: the silent protagonists.
        J Endod. 2008; 34: 773-788
        • Farges J.C.
        • Alliot-Licht B.
        • Renard E.
        • et al.
        Dental pulp defence and repair mechanisms in dental caries.
        Mediators Inflamm. 2015; 2015: 1-16
        • Cooper P.R.
        • Chicca I.
        • Holder M.
        • et al.
        Inflammation and regeneration in the dentin-pulp complex: net gain or net loss?.
        J Endod. 2017; 43: 87-94
        • Duncan H.F.
        • Cooper P.R.
        Pulp innate immune defense: translational opportunities.
        J Endod. 2020; 46: 10-18
        • Couve E.
        • Osorio R.
        • Schmachtenberg O.
        Reactionary dentinogenesis and neuroimmune response in dental caries.
        J Dent Res. 2014; 93: 788-793
        • Hahn C.L.
        • Liewehr F.R.
        Relationships between caries bacteria, host responses, and clinical signs and symptoms of pulpitis.
        J Endod. 2007; 33: 213-219
        • Stratton J.A.
        • Holmes A.
        • Rosin N.L.
        • et al.
        Macrophages regulate Schwann cell maturation after nerve injury.
        Cell Rep. 2018; 24: 2561-2572
        • Stratton J.A.
        • Shah P.T.
        Macrophage polarization in nerve injury: do Schwann cells play a role?.
        Neural Regen Res. 2016; 11: 53-57
        • Cattin A.L.
        • Burden J.J.
        • Van Emmenis L.
        • et al.
        Macrophages-induced blood vessels guide Schwann cell-mediated regeneration of peripheral nerves.
        Cell. 2015; 162: 1127-1139
        • Martini R.
        • Fischer S.
        • López-Vales R.
        • et al.
        Interactions between Schwann cells and macrophages in injury and inherited demyelinating disease.
        Glia. 2008; 56: 1566-1577
        • Jessen K.R.
        • Mirsky R.
        The success and failure of the Schwann cell response to nerve injury.
        Front Cell Neurosci. 2019; 13: 1-14
        • Jessen K.R.
        • Mirsky R.
        The repair Schwann cell and its function in regenerating nerves.
        J Physiol. 2016; 594: 3521-3531
        • Tofaris G.K.
        • Patterson P.H.
        • Jessen K.R.
        • et al.
        Denervated Schwann cells attract macrophages by secretion of leukemia inhibitory factor (LIF) and monocyte chemoattractant protein-1 in a process regulated by interleukin-6 and LIF.
        J Neurosci. 2002; 22: 6696-6703
        • Chen P.
        • Piao X.
        • Bonaldo P.
        Role of macrophages in Wallerian degeneration and axonal regeneration after peripheral nerve injury.
        Acta Neuropathol. 2015; 130: 605-618
        • Cooper P.R.
        • Takahashi Y.
        • Graham L.W.
        • et al.
        Inflammation-regeneration interplay in the dentine-pulp complex.
        J Dent. 2010; 38: 687-697
        • El Karim I.A.
        • Cooper P.R.
        • About I.
        • et al.
        Deciphering reparative processes in the inflamed dental pulp.
        Front Dent Med. 2021; 2: 1-10
        • Bjørndal L.
        Dentin and pulp reaction to caries and operative treatment: biological variables affecting treatment outcome.
        Endod Top. 2002; 3: 123-136
        • Ricucci D.
        • Loghin S.
        • Siqueira J.
        Correlation between clinical and histologic pulp diagnoses.
        J Endod. 2014; 40: 1932-1939
        • Baral P.
        • Udit S.
        • Chiu I.
        Pain and immunity: implications for host defence.
        Nat Rev Immunol. 2019; 19: 433-447
        • Yoshiba N.
        • Edanami N.
        • Ohkura N.
        • et al.
        M2 phenotype macrophages colocalize with Schwann cells in human dental pulp.
        J Dent Res. 2020; 99: 329-338
        • Holder M.J.
        • Wright H.J.
        • Couve E.
        • et al.
        Neutrophil extracellular traps exert potential cytotoxic and proinflammatory effects in the dental pulp.
        J Endod. 2019; 45: 513-520.e3
        • Neves V.C.
        • Yianni V.
        • Sharpe P.T.
        Macrophage modulation of dental pulp stem cell activity during tertiary dentinogenesis.
        Sci Rep. 2020; 10: 20216
        • Couve E.
        • Lovera M.
        • Suzuki K.
        • et al.
        Schwann cell phenotype changes in aging human dental pulp.
        J Dent Res. 2018; 97: 347-355
        • Nair P.N.
        • Schroeder H.E.
        Number and size spectra of non-myelinated axons of human premolars.
        Anat Embryol (Berl). 1995; 192: 35-41
        • Nair P.N.
        • Luder H.U.
        • Schroeder H.E.
        Number and size-spectra of myelinated nerve fibers of human premolars.
        Anat Embryol. 1992; 186: 563-571
        • Hartlehnert M.
        • Derksen A.
        • Hagenacker T.
        • et al.
        Schwann cells promote post-traumatic nerve inflammation and neuropathic pain through MHC class II.
        Sci Rep. 2017; 7: 1-10
        • Trias E.
        • Kovacs M.
        • King P.H.
        • et al.
        Schwann cells orchestrate peripheral nerve inflammation through the expression of CSF1, IL-34, and SCF in amyotrophic lateral sclerosis.
        Glia. 2020; 68: 1165-1181
        • Jessen K.R.
        • Mirsky R.
        • Arthur-Farraj P.
        The role of cell plasticity in tissue repair: adaptive cellular reprogramming.
        Dev Cell. 2015; 34: 613-620
        • Meyer Zu Hörste G.
        • Heidenreich H.
        • Lehmann H.C.
        • et al.
        Expression of antigen processing and presenting molecules by Schwann cells in inflammatory neuropathies.
        Glia. 2010; 58: 80-92
        • Liu H.
        • Shiryaev S.A.
        • Chernov A.V.
        • et al.
        Immunodominant fragments of myelin basic protein initiate T cell-dependent pain.
        J Neuroinflammation. 2012; 9: 1-18
        • Meyer Zu Hörste G.
        • Hu W.
        • Hartung H.P.
        • et al.
        The immunocompetence of Schwann cells.
        Muscle Nerve. 2008; 37: 3-13
        • Abdo H.
        • Calvo-Enrique L.
        • Lopez J.M.
        • et al.
        Specialized cutaneous Schwann cells initiate pain sensation.
        Science. 2019; 365: 695-699
        • Suzuki K.
        • Lovera M.
        • Schmachtenberg O.
        • et al.
        Axonal degeneration in dental pulp precedes human primary teeth exfoliation.
        J Dent Res. 2015; 94: 1446-1453
        • Hahn C.L.
        • Liewehr F.R.
        Innate immune responses of the dental pulp to caries.
        J Endod. 2007; 33: 643-651https://doi.org/10.1016/j.joen.2007.01.001
        • Hahn C.L.
        • Liewehr F.R.
        Update on the adaptive immune responses of the dental pulp.
        J Endod. 2007; 33: 773-781https://doi.org/10.1016/j.joen.2007.01.002
        • Bruno K.F.
        • Silva J.A.
        • Silva T.A.
        • et al.
        Characterization of inflammatory cell infiltrate in human dental pulpitis.
        Int Endod J. 2010; 43: 1013-1021
        • Izumi T.
        • Kobayashi J.
        • Okamura K.
        • et al.
        Immunohistochemical study on the immunocompetent cells of the pulp in human non-carious and carious teeth.
        Arch Oral Biol. 1996; 41: 627-630
        • Ydens E.
        • Cauwels A.
        • Asselbergh B.
        • et al.
        Acute injury in the peripheral nervous system triggers an alternative macrophage response.
        J Neuroinflammation. 2012; 9: 176
        • Gaudet A.D.
        • Popovich P.G.
        • Ramer M.S.
        Wallerian degeneration: gaining perspective on inflammatory events after peripheral nerve injury.
        J Neuroinflammation. 2011; 8: 110
        • Mantovani A.
        • Biswas S.K.
        • Galdiero M.R.
        • et al.
        Macrophage plasticity and polarization in tissue repair and remodelling.
        J Pathol. 2013; 229: 176-185
        • McWhorter F.Y.
        • Wang T.
        • Nguyen P.
        • et al.
        Modulation of macrophage phenotype by cell shape.
        Proc Natl Acad Sci U S A. 2013; 110: 17253-17258
        • Deshmane S.L.
        • Kremlev S.
        • Amini S.
        • et al.
        Monocyte chemoattractant protein-1 (MCP-1): an overview.
        J Interferon Cytokine Res. 2009; 29: 313-326
        • Abd-Elmeguid A.
        • Abdeldayem M.
        • Kline L.W.
        • et al.
        Osteocalcin expression in pulp inflammation.
        J Endod. 2013; 39: 865-872
        • Sozzani S.
        • Locati M.
        • Zhou D.
        • et al.
        Receptors, signal transduction, and spectrum of action of monocyte chemotactic protein-1 and related chemokines.
        J Leukoc Biol. 1995; 57: 788-794
        • Fischer S.
        • Kleinschnitz C.
        • Müller M.
        • et al.
        Monocyte chemoattractant protein-1 is a pathogenic component in a model for a hereditary peripheral neuropathy.
        Mol Cell Neurosci. 2008; 37: 359-366
        • Tzekova N.
        • Heinen A.
        • Küry P.
        Molecules involved in the crosstalk between immune- and peripheral nerve Schwann cells.
        J Clin Immunol. 2014; 34: 86-104
        • Wei Z.
        • Fei Y.
        • Su W.
        • et al.
        Emerging role of Schwann cells in neuropathic pain: receptors, glial mediators and myelination.
        Front Cell Neurosci. 2019; 13: 116
        • Ydens E.
        • Lornet G.
        • Smits V.
        • et al.
        The neuroinflammatory role of Schwann cells in disease.
        Neurobiol Dis. 2013; 55: 95-103
        • Lindborg J.A.
        • Mack M.
        • Zigmond R.E.
        Neutrophils are critical for myelin removal in a peripheral nerve injury model of Wallerian degeneration.
        J Neurosci. 2017; 37: 10258-10277
        • Amulic B.
        • Cazalet C.
        • Hayes G.L.
        • et al.
        Neutrophil function: from mechanisms to disease.
        Annu Rev Immunol. 2012; 30: 459-489
        • Rechenberg D.K.
        • Galicia J.C.
        • Peters O.A.
        Biological markers for pulpal inflammation: a systematic review.
        PLoS One. 2016; 11: 1-24
        • Cootauco C.J.
        • Rauschenberger C.R.
        • Nauman R.K.
        Immunocytochemical distribution of human PMN elastase and cathepsin-G in dental pulp.
        J Dent Res. 1993; 72: 1485-1490
        • Nakanishi T.
        • Matsuo T.
        • Ebisu S.
        Quantitative analysis of immunoglobulins and inflammatory factors in human pulpal blood from exposed pulps.
        J Endod. 1995; 21: 131-136
        • Brinkmann V.
        • Reichard U.
        • Goosmann C.
        • et al.
        Neutrophil extracellular traps kill bacteria.
        Science. 2004; 303: 1532-1535
        • Chiu I.M.
        • von Hehn C.A.
        • Woolf C.J.
        Neurogenic inflammation and the peripheral nervous system in host defense and immunopathology.
        Nat Neurosci. 2012; 5: 1063-1067
        • Chiu I.
        • Heesters B.
        • Ghasemlou N.
        • et al.
        Bacteria activate sensory neurons that modulate pain and inflammation.
        Nature. 2013; 501: 52-57
        • Couve E.
        • Osorio R.
        • Schmachtenberg O.
        Mitochondrial autophagy and lipofuscin accumulation in aging odontoblasts.
        J Dental Res. 2012; 91: 696-701