ABSTRACT
Introduction
Chitosan is a cationic biopolymer and its modification as a nanoparticle, as well
as loading a corticosteroid on it, may enhance its bone regenerative effect. The aim
of this study was to investigate the bone regenerative effect of nanochitosan with
or without dexamethasone.
Methods
Under general anesthesia, four cavities were created in the calvarium of 18 rabbits
and filled with either nanochitosan, nanochitosan with a temporally-controlled release
of dexamethasone (nanochitosan+dexamethasone), an autograft, or left unfilled (control).
The defects were then covered with a collagen membrane. The rabbits were randomly
divided into 2 groups and were sacrificed at 6 or 12 weeks post-surgery. The new bone
type, osteogenesis pattern, foreign body reaction, as well as the type and severity
of the inflammatory response were evaluated histologically. The amount of new bone
was determined using histomorphometry and cone-beam computed tomography (CBCT). A
one-way ANOVA with repeated-measures was performed to compare results between the
groups at each interval. A T-test and Chi-square were also conducted to analyze changes
in variables between the two intervals.
Results
Nanochitosan and the combination of nanochitosan and dexamethasone significantly increased
the combination of woven and lamellar bone (P=0.007). No sample showed a foreign body reaction or any acute or severe inflammation.
Chronic inflammation was significantly decreased in number (P=0.002) and severity (P=0.003) over time. There was no significant difference between the extent and pattern
of osteogenesis amongst the four groups, as evaluated by histomorphometry and CBCT
at each interval.
Conclusion
Nanochitosan and nanochitosan+dexamethasone were comparable to the gold standard of
autograft regarding the type and severity of inflammation, as well as the level and
pattern of osteogenesis, yet they induced more woven and lamellar bone.
KEY WORDS
To read this article in full you will need to make a payment
Purchase one-time access:
Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online accessOne-time access price info
- For academic or personal research use, select 'Academic and Personal'
- For corporate R&D use, select 'Corporate R&D Professionals'
Subscribe:
Subscribe to Journal of EndodonticsAlready a print subscriber? Claim online access
Already an online subscriber? Sign in
Register: Create an account
Institutional Access: Sign in to ScienceDirect
REFERENCES
- Histologic and histomorphometric evaluation of bone regeneration using nanocrystalline hydroxyapatite and human freeze-dried bone graft: an experimental study in rabbit.J Orofac Orthop. 2017; 78: 144-152
- Influence of bone morphogenetic protein and proportion of hydroxyapatite on new bone formation in biphasic calcium phosphate graft: two pilot studies in animal bony defect model.J Craniomaxillofac Surg. 2014; 42: 1909-1917
- Morbidity at bone graft donor sites.J Orthop Trauma. 1989; 3: 192-195
- Histologic evaluation of chitosan as an accelerator of bone regeneration in microdrilled rat tibias.Dent Res J (Isfahan). 2012; 9: 694-699
- Bone regeneration in the presence of a synthetic hydroxyapatite/silica oxide-based and a xenogenic hydroxyapatite-based bone substitute material.Clin Oral Implants Res. 2011; 22: 506-511
- Chitosan membranes.Ion Exch Membr. 1974; 1: 193-196
- Chitosan as antimicrobial agent: applications and mode of action.Biomacromolecules. 2003; 4: 1457-1465
- Evaluation of nanostructured composite collagen--chitosan matrices for tissue engineering.Tissue Eng. 2001; 7: 203-210
- Recent advances on chitosan-based micro- and nanoparticles in drug delivery.J Control Release. 2004; 100: 5-28
- Temporal-controlled dexamethasone releasing chitosan nanoparticle system enhances odontogenic differentiation of stem cells from apical papilla.J Endod. 2015; 41: 1253-1258
- Chitosan-glycerol phosphate/blood implants increase cell recruitment, transient vascularization and subchondral bone remodeling in drilled cartilage defects.Osteoarthritis Cartilage. 2007; 15: 316-327
- Use of chitosan and hydroxypropylchitosan in drug formulations to effect sustained release.Drug Des Deliv. 1986; 1: 119-130
- Chitosan and its derivatives: potential excipients for peroral peptide delivery systems.Int J Pharm. 2000; 194: 1-13
- Chitosan and its derivatives for tissue engineering applications.Biotechnol Adv. 2008; 26: 1-21
- Antibacterial nanoparticles in endodontics: a review.J Endod. 2016; 42: 1417-1426
- An investigation on the antibacterial and antibiofilm efficacy of cationic nanoparticulates for root canal disinfection.J Endod. 2008; 34: 1515-1520
- Water disinfection using photosensitizers immobilized on chitosan.Water Res. 2006; 40: 1269-1275
- Crosslinked collagen/chitosan matrix for artificial livers.Biomaterials. 2003; 24: 3213-3220
- Effects of a bioactive scaffold containing a sustained transforming growth factor-β1-releasing nanoparticle system on the migration and differentiation of stem cells from the apical papilla.J Endod. 2016; 42: 1385-1392
- Formation of odontoblast-like cells from cultured human dental pulp cells on dentin in vitro.J Endod. 2006; 32: 1066-1073
Nancy A. Ten Cate's Oral Histology. Development, Structure, and Function. 9th edition, 2016.
- Alterations of the trabecular pattern of the jaws in patients with osteoporosis.Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1999; 88: 628-635
- Closure of rabbit calvarial critical-sized defects using protective composite allogeneic and alloplastic bone substitutes.J Craniofac Surg. 2006; 17: 926-934
- Effect of solely applied platelet-rich plasma on osseous regeneration compared to Bio-Oss: a morphometric and densitometric study on rabbit calvaria.Clin Implant Dent Relat Res. 2008; 10: 106-112
- The influence of FDBA and autogenous bone particles on regeneration of calvaria defects in the rabbit: a pilot study.Ann Anat. 2011; 193: 412-417
- Spontaneous healing capacity of rabbit cranial defects of various sizes.J Periodontal Implant Sci. 2010; 40: 180-187
- Bone augmentation in rabbit calvariae: comparative study between Bio-Oss and a novel beta-TCP/DCPD granulate.J Clin Periodontol. 2006; 33: 922-928
- Ingrowth of bone into absorbable bone cement: an in vivo microscopic evaluation.Am J Orthop (Belle Mead NJ). 2003; 32: 581-584
- Tissue-engineered bone using mesenchymal stem cells and a biodegradable scaffold.J Craniofac Surg. 2002; 13: 231-239
- Comparison of bone regeneration using three demineralized freeze-dried bone allografts: A histological and histomorphometric study in rabbit calvaria.Dent Res J (Isfahan). 2012; 9: 554-560
- Bone regeneration effects of human allogenous bone substitutes: a preliminary study.J Periodontal Implant Sci. 2010; 40: 132-138
- Modulation of the inflammatory response and bone healing.Front Endocrinol (Lausanne). 2020; 11: 386
- Osteocyte density in woven bone.Bone. 2004; 35: 1095-1099
- Resolution of inflammation in bone regeneration: from understandings to therapeutic applications.Biomaterials. 2021; 277121114
- Chitosan and its derivatives as intestinal absorption enhancers.Adv Drug Deliv Rev. 2001; 50: S91-101
- Histologic evaluation of bone healing following application of anorganic bovine bone and β-tricalcium phosphate in rabbit calvaria.J Dent (Tehran). 2012; 9: 35-40
Article info
Publication history
Accepted:
March 2,
2023
Received in revised form:
January 18,
2023
Received:
November 12,
2022
Publication stage
In Press Accepted ManuscriptIdentification
Copyright
© 2023 Published by Elsevier Inc. on behalf of American Association of Endodontists.